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Big	Data	is	not	enough

• Many	use	cases	for	Big	Data
• Growing	quantity	of	data	available	at	
decreasing	cost

• Much	demonstration	of	predictive	ability;	less	
so	of	value

• Many	caveats	for	different	types	of	biomedical	
data

• Effective	solutions	require	people	and	systems

2
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Many	use	cases	for	Big	Data	in	
medicine	(Bates,	2014)

• High-cost	patients	– looking	for	
ways	to	intervene	early

• Readmissions	– preventing
• Triage	– appropriate	level	of	care
• Decompensation	– when	
patient’s	condition	worsens

• Adverse	events	– awareness
• Treatment	optimization	–
especially	for	diseases	affecting	
multiple	organ	systems

3

Growing	quantity	at	increasingly	lower	
cost	of	data

• Last	half-decade	has	seen	dramatic	
growth	in	adoption	of	electronic	
health	record	(EHR)	by	hospitals	
(96%)	and	physicians	(83%)	
(DesRoches,	2015;	Gold,	2016)

• Cost	of	genome	sequencing	has	
fallen	faster	than	Moore’s	Law	
(NHGRI,	2016)

• Proliferation	of	other	data	sources
– Imaging
– Wearables
– Web	and	social	media

4
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Important	data-related	initiatives	from	
US	government

• Big	Data	to	Knowledge	(BD2K)	(Bourne,	2015)	–
https://datascience.nih.gov

• Sync	for	Science	(White,	2016)	– http://syncfor.science
• Vital	Directions	for	Health	and	Health	Care	(Dzau,	
2016)

• Precision	Medicine	Initiative	(Collins,	2015)	–
https://www.nih.gov/research-training/allofus-
research-program

• Cancer	Moonshot	(Singer,	2016)	–
https://www.cancer.gov/research/key-
initiatives/moonshot-cancer-initiative

• 21st Century	Cures	(Kesselheim,	2017)

5

Rationale
• Growing	quantity	and	complexity	of	healthcare	data	
through	EHR	capture,	genomics,	and	other	sources	
require	more	decision	support	(Stead,	2011)

• With	shift	of	payment	from	“volume	to	value,”
healthcare	organizations	will	need	to	manage	
information	better	to	deliver	better	care	(Horner,	2012;	
Burwell,	2015)

• New	care	delivery	models	(e.g.,	accountable	care	
organizations)	will	require	better	access	to	data	(e.g.,	
health	information	exchange,	HIE)
– Halamka (2013):	ACO	=	HIE	+	analytics

6
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Ever-growing	number	of	studies	
demonstrating	predictive	ability

• Using	EHR	data	to	predict	patients	at	risk	for	
readmission	(Amarasingham,	2010;	Donzé,	2013;	
Gildersleeve,	2013;	Hebert,	2014;	Shadmi,	2015)

• Identifying	patients	who	might	be	eligible	for	
participation	in	clinical	studies	(Voorhees,	2012)

• Detecting	postoperative	complications	(FitzHenry,	
2013;	Tien,	2015)

• Detecting	potential	delays	in	cancer	diagnosis	
(Murphy,	2014)

• Predicting	future	patient	costs	(Charlson,	2014)

7

Predictive	studies	(cont.)
• Optimizing	primary	care	physician	panel	size	
(Rajkomar,	2016)

• Real-time	alerting	of	mortality	risk	and	prolonged	
hospitalization	from	EHR	data	(Khurana,	2016)

• Elucidating	treatment	pathways	for	common	
diseases	(Hripcsak,	2016)

• NLP-based	case-finding	algorithm	of	HIE	data	
increased	detection	of	diabetes	cases (Zheng,	
2016)

• The	list	goes	on	and	on	…	

8
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BUT,	studies	demonstrating	improved	
patient	outcomes	are	fewer

• Readmission	tool	applied	with	case	management	reduced	
readmissions	(Gilbert,	2013)

• Bayesian	network	model	embedded	in	EHR	to	predict	hospital-
acquired	pressure	ulcers	led	to	tenfold	reduction	in	ulcers	and	one-
third	reduction	in	intensive	care	unit	length	of	stay	(Cho,	2013)

• Readmission	risk	tool	intervention	reduced	risk	of	readmission	for	
patients	with	congestive	heart	failure	but	not	those	with	acute	
myocardial	infarction	or	pneumonia	(Amarasingham,	2013)

• Use	of	EHR-based	acuity	score	allowed	intervention	that	reduced	
in-hospital	mortality	from	1.9%	to	1.3%	(Rothman,	2015)

• Tool	to	reduce	delay	in	cancer	diagnosis	led	to	earlier	diagnosis	for	
colorectal	and	prostate	cancer	(Murphy,	2015)

9

Newer	studies	of	outcomes
• Use	of	predictive	report	based	on	NLP	tool	reduced	time	in	

discharge	planning	meetings	and	30-day	all-cause	mortality	
although	not	cost	or	readmissions	(Evans,	2016)

• Development	and	use	of	a	universal	data	architecture	at	
Geisinger has	led	to	successes	in	(Erskine,	2016)
– Closing	loop	on	appropriate	treatment	and	lack	of	follow-up
– Early	detection	and	treatment	of	sepsis
– Monitoring	and	control	of	surgery	costs	and	outcomes

• In	cohort	of	children	with	cerebral	palsy,	implementation	of	
a	learning	health	system	led	to	(Lowes,	2016)
– 43%	reduced	hospital	days
– 30%	reduction	in	emergency	department	visits
– 210%	reduction	in	healthcare	costs

10
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Some	challenges	for	analytical	use	of	
clinical	(EHR)	data

• Data	quality	and	accuracy	is	not	a	top	priority	for	
busy	clinicians	(de	Lusignan,	2005)

• Data	quantity	can	be	overwhelming	– average	
pediatric	ICU	patient	generates	1348	information	
items	per	24	hours	(Manor-Shulman,	2008)

• Patients	get	care	at	different	institutions	
(Bourgeois,	2010;	Finnell,	2011)

• Much	data	is	“locked”	in	text	(Hripcsak,	2012)
• EHRs	of	academic	medical	centers	not	easy	to	
combine	for	aggregation	(Broberg,	2015)

11

Caveats	for	use	of	operational	EHR	
data	(Hersh,	2013)	– may	be

• Inaccurate
• Incomplete
• Transformed	in	ways	that	
undermine	meaning

• Unrecoverable
• Of	unknown	provenance
• Of	insufficient	granularity
• Incompatible	with	
research	protocols

12
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Many	“idiosyncrasies”	of	clinical	data	
(Hersh,	2013)

• “Left	censoring”	– First	instance	of	disease	in	record	
may	not	be	when	first	manifested

• “Right	censoring” – Data	source	may	not	cover	long	
enough	time	interval

• Data	might	not	be	captured	from	other	clinical	(other	
hospitals	or	health	systems)	or	non-clinical	(OTC	drugs)	
settings

• Bias	in	testing	or	treatment
• Institutional	or	personal	variation	in	practice	or	
documentation	styles

• Inconsistent	use	of	coding	or	standards

13

Information	from	scientific	
publications	can	also	be	problematic

• Science,	driven	by	experimentation,	is	the	best	source	of	
truth,	but	just	because	something	is	written	in	a	journal	
article	does	not	mean	it	is	true
– Winner’s	curse	(Ioannidis,	2005;	Young,	2008)	leads	to	

publication	bias	(Dwan,	2013)
– Reproducibility	(Begley,	2012;	Science,	2015;	Begley,	2015;	

Baker,	2016)
– Clinical	trials	may	not	be	representative	of	patient	populations	

(Weng,	2014;	Prieto-Centurion,	2014;	Geifman,	2016)
– Use	of	surrogate	endpoints	may	distort	efficacy	(Kim,	2015)
– Reversal	(Ioannidis,	2005;	Prasad,	2013;	Prasad,	2015)
– Erroneous	information	in	reference	materials	(Randhawa,	2015)
– Outright	fraud	not	infrequent	(RetractionWatch.com),	may	be	

driven	by	predatory	publishing	(Haug,	2013;	Moher,	2016)

14
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Results	can	be	misleading,	conflicting,	
or	hyped

• Observational	studies	can	
mislead	us,	e.g.,	Women’s	
Health	Initiative	(JAMA,	2002)

• Observational	studies	do	not	
discern	cause	and	effect,	e.g.,	
diet	and	cancer	(Schoenfeld,	
2013)

• Hype	about	new	technologies	
not	yet	fully	assessed,	e.g.,	IBM	
Watson	– much	promise	but	
much	hype	(Hersh,	2013;	
Hersh,	2016;	Schank,	2016)

15

Biomedical	researchers	are	not	
necessarily	good	software	engineers

• Many	scientific	researchers	write	code	
but	are	not	always	well-versed	in	best	
practices	of	testing	and	error	detection	
(Merali,	2010)

• Scientists	have	history	of	relying	on	
incorrect	data	or	models	(Sainani,	2011)

• They	may	also	not	be	good	about	
selection	of	best	software	packages	for	
their	work	(Joppa,	2013)

• 3000	of	40,000	studies	using	fMRI	may	
have	false-positive	results	due	to	faulty	
algorithms	and	bugs	(Eklund,	2016)

16
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Should	there	be	more	sharing	of	
scientific	data?	Yes,	but	…

• Came	to	fore	with	ICMJE	guidelines	(Taichman,	2016)	
and	NEJM	“research	parasites”	editorial	(Longo,	2016)
– Pro:	fairness	to	funders	(taxpayers)	and	subjects	(patients)
– Con:	researchers	who	carried	out	the	heavy	work	need	
period	of	embargo	and	protection	from	misuse	of	their	
data	(ICIFTDS,	2016);	costs	of	curating	and	organizing	27K	
clinical	trials	per	year;	amount	of	actual	use	modest	
(Strom,	2016)

• Informatics	issues:	need	for	attention	to	standards	
(Kush,	2014);	workflows,	patient	engagement	
(Tennenbaum,	2016)

17

Other	concerns
• Boyd	(2012)	– critical	

questions	for	Big	Data
– Big	Data	changes	the	

definition	of	knowledge
– Claims	to	objectivity	and	

accuracy	are	misleading
– Bigger	data	are	not	always	

better	data
– Taken	out	of	context,	Big	

Data	loses	its	meaning
– Just	because	it	is	accessible	

does	not	make	it	ethical
– Limited	access	to	Big	Data	

creates	new	digital	divides

• Fung	(2014)	– Big	Data	
is	OCCAM
– Observational
– Lacking	Controls
– Seemingly	Complete
– Adapted
– Merged

• Big	Data	not	neutral;	
reflects	our	values	and	
priorities	(Richards,	
2014;	Barocas,	2015)

18
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Big	Data	requires	more	than	the	data;	
also	takes	people

• Data	scientists	– the	“sexiest	profession	of	the	
21st century”	(Davenport,	2012)

• McKinsey	(Manyika,	2011)	– need	in	US	in	all	
industries	(not	just	healthcare)	for
– 140,000-190,000	individuals	who	have	“deep	
analytical	talent”

– 1.5	million	“data-savvy	managers	needed	to	take	full	
advantage	of	big	data”	

• Similar	analysis	by	IDC	(2014)	of	need	for	180,000	
with	“deep”	talent	and	5-fold	around	with	skills	in	
data	management	and	interpretation

19

Big	Data	also	requires	systems

• Infrastructure	(Amarasingham,	2014)
– Stakeholder	engagement
– Human	subjects	research	protection
– Protection	of	patient	privacy
– Data	assurance	and	quality
– Interoperability	of	health	information	systems
– Transparency
– Sustainability

• New	models	of	thinking	and	training	users	of	data	
(Krumholz,	2014)
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Some	axes	to	grind
• Is	data	science	really	new	or	different?

– Statisticians	(Donoho,	2016)	and	
informaticians (Hersh,	2015)	have	been	
doing	some	of	this	for	a	long	time

• Will	Big	Data	transform	medicine?
– In	some	areas,	but	need	more	

demonstration	of	value	than	ability	to	
predict

• How	can	we	optimize	its	use?
– Research	focused	on	its	applications	

and	their	outcomes
– Don’t	oversell	it,	especially	to	clinicians

21

Much	promise	for	Big	Data	in	Health	and	
Biomedicine,	but	need

• Other	aspects	of	informatics
– Robust	EHRs	and	other	clinical	data	sources
– Standards	and	interoperability
– Health	information	exchange
– Usability	of	clinical	systems

• Improved	completeness	and	quality	of	data
• Research	demonstrating	how	best	applied	to	
improve	health	and	outcomes

• Human	expertise	and	systems	to	apply	and	
disseminate
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