
The SAPHIRE Server: A New Algorithm and Implementation

William Hersh, M.D. T.J. Leone, M.S.
Biomedical Information Communication Center

Oregon Health Sciences University
Portland, OR USA

SAPHIRE is an experimental information retrieval
system implemented to test new approaches to
automated indexing and retrieval of medical
documents. Due to limitations in its original concept-
matching algorithm, a modified algorithm has been
implemented which allows greaterflexibility in
partial matching and different word order within
concepts. With the concomitant growth in client-
server applications and the Internet in general, the
new algorithm has been implemented as a server that
can be accessed via other applications on the
Internet.

Introduction

The SAPHIRE project was undertaken with the goal
of improved document retrieval in the medical
domain. It was initially implemented in the single-
user Macintosh environment [1, 2] and has been
evaluated extensively [3, 4]. The results of these
experiments show that while the concept-matching
algorithm used for automated indexing does not
confer benefit over single-word automated indexing,
it can be useful for assisting users in mapping the free
text of queries into terms from controlled
vocabularies, such as the UMLS Metathesaurus [5].

The problems in current information retrieval (IR)
systems that motivated SAPHIRE include the
inconsistency of human indexers [6], the underlying
inconsistency of human language used by authors [7],
and the difficulty end-users often have with Boolean
operators used in most IR systems [8]. SAPHIRE
attempted to address these problems by basing its
indexing on a concept-matching approach, such that
different string forms of a concept (also called terms)
would map to the same underlying concept [2].
Using a vocabulary such as the UMLS Metathesaurus
[9], with its breadth of concepts as well as depth of
synonyms, would allow many terms of a concept to
be recognized for most medical concepts.

This concept-matching approach was used for both
indexing and retrieval, with the goal of matching the
diverse expressions of concepts in documents and
user queries. For indexing, documents were
processed by SAPHIRE to identify their underlying
concepts, which were weighted by the IDF*TF

formula that gave the highest weight to terms
occurring frequently in a small number of documents
[10]. In retrieval, the user query was processed to
obtain their concepts, which were then matched
against the indexing concepts in the documents to
obtain a weighted list of matching documents.

The original SAPHIRE concept-matching algorithm
used a strict pattern-matching approach requiring not
only that all words in a matching term be present but
also that they occur in the word order of the term in
the vocabulary. The motivation for this high-
precision approach was to avoid false-positive
matching. This resulted, however, in missing some
true-positive matches, which was shown in failure
analyses to cause nonretrieval of relevant documents
[3].

We have subsequently developed a new algorithm to
allow partial matching of concepts and not require
exact word order. This approach has been used by
others [11, 12]. One limitation is that it necessarily
results in an increased amount of false-positive
matching, which we hope to control with a weighting
scheme that would give highest weight to those
concepts matching the input document or query most
closely. The indexing algorithm or user performing a
query could then decide upon the trade-off between
false-positive and false-negative matching, based on
how far down the weighted list of concepts they
chose to go to include terms.

At the time that the new algorithm was being
implemented, the growth of client-server
applications, especially those running on the Internet,
was increasing. The goal of SAPHIRE has always
been to interact with other information systems, such
as the DeSyGNER environment from the Decision
Systems Group (DSG) at Brigham and Women's
Hospital (BWH) [13]. By separating the concept-
matching algorithm from the IR system, many other
applications could utilize the algorithm itself. Thus it
was decided to reimplement it in a client-server
architecture that would allow any application running
on the Internet to have access to it. In the remainder
of this paper, we discuss the algorithm itself and its
implementation on the Internet.

0195-4210/95/$5.00 C 1995 AMIA, Inc. 858

Algorithm

As noted above, the goal of the new SAPHIRE
concept-matching algorithm was to allow partial
matching of concepts and not require the exact word
order as it occurs in the Metathesaurus vocabulary.
As with the original algorithm, the UMLS
Metathesaurus was used, due to its comprehensive
list of concepts and their synonyms. The new
algorithm also took advantage of a new feature that
began with the 1992 version of the Metathesaurus,
which was an inverted list of all words that occurred
in each concept.

Before describing the specifics of the algorithm,
some definitions of potentially ambiguous
terminology are helpful. The Metathesaurus is
organized into concepts, which have a unique
identifier (the CUI). Each major synonym form that
is not just a simple lexical variant (i.e., plural or word
order change) is a term, each of which also has a
unique identifier (the LUI). There can be one or
more LUI's for each CUI. Each lexical variant of
each term is a string (with a unique identifier SUI),
and there can be more than one SUI for each LUI. As
an example, consider the concept atrialfibrillation,
which has terms atrialfibrillation and auricular
fibrillation. The former term has the lexical variants
fibrillation, atrial and atrial fibrillations.

The MRCON file from the UMLS CD-ROM, which
is the central table of the Metathesaurus, contains a
row for each string along with its SUI, LUI, and CUI.
(Each CUI has a canonical or preferred string; for
SAPHIRE's purposes the remaining strings are
synonyms.) The MRWD file, which is the inverted
word list table, contains a row for each word that
occurs in an SUI/LUI/CUI triple. The SAPHIRE
algorithm uses these tables intact, but adds some
additional files to allow their rapid'access. In
particular, B-Tree files are added that allow quick
look-up of words, LUI's, and CUI's.

The algorithm begins by breaking the input string
(which can be a sentence or phrase from a document
or a user's query) into individual words. Words are
designated as common if they occur with a frequency
above a specified cut-off in the Metathesaurus. The
purpose of designating words as common is to reduce
the computational overload for words which are
occasionally important in some terms but occur
frequently in others, such as the word A in Vitamin A
or acute in acute abdomen. Since the words A and
acute occur commonly in many other terms,
calculating weights for these qdditional terms adds a
large and unnecessary computational burden.

For each word in the input string, a list of
Metathesaurus terms in which the word occurs is
constructed. The Metathesaurus term lists for
common words contain only those terms that also
occur in one or more of the non-common words in
the input string. Using one of the above examples, if
the string were acute abdomen, the common word
acute would only contain the term acute abdomen
and not the term acute leukemia.

Once the term lists for each word are created, a
master term list is created that contains any term
which occurs in one or more individual word lists.
Terms in which less than half of the words occur in
the input string are discarded. (Thus, a partial match
must have half or more of the words from the term in
the input string.) The terms are then weighted based
on formula that gives weight to terms that are longest,
have the highest proportion of words from the term in
the string, and have the words of the term occurring
in close proximity to each other.

The algorithm has a number of switches that allow
modification of its parameters. The common word
cut-off is the Metathesaurus frequency threshold to
designate terms as common. It can be set at any level
but the default value is 270, which means that any
word which occurs more than 270 times in all of the
Metathesaurus strings is designated as common. This
number was set based upon empirical observation of
the algorithm's behavior and results in the most
frequent 10% of words in the Metathesaurus being
designated as common.

The other switches affect the format of the list of
matched terms. The CUI switch causes output to be
listed by CUI instead of LUI. (All LUI's for a given
CUI are merged, with the weight for the CUI
becoming the weight of its highest LUI.) Two other
switches control the size of the output list, with one a
cut-off for the number of terms displayed and the
other a cut-off for the lowest weight allowed. A final
switch allows a specific source vocabulary to be set
(i.e., MeSH or DxPlain), in which all terms not in that
vocabulary are discarded from the returned list.

Figure 1 depicts the actual algorithm in pseudocode.
Figure 2 lists a number of example strings input to
the algorithm. As can be seen, a number of concepts
from the input string that are incomplete (i.e., calcium
blockers) or have altered word order (i.e., blood
pressure is high) are still properly recognized.

859

function saphire-concept-matching-algorithm

Input: string of words
common word cut-off (default = 270)
CUI (default = false)
size cut-off (default = 40)
weight cut-off (default = 1.0)

Output: list of Meta terms

for each word in string
word_frequency = number of Metathesaurus concepts that word occurs in
if wordjfrequency is greater than the common word cut-off then
word is common

else
create a list of all Meta terms that contain this word

for each word in string that is common
create a list of all Meta terms that contain this word alone or

that contain this word and at least one word that is not common
create a master list of all Meta terms that occur in any of the words
for all Meta terms in the master list

twis = number of words from this term in string
wit = number of words in term
if (wit + 1) div 2 < twis then discard this term

for all Meta terms in master list
term_words_present = twis / wit
log_term_length = log (wit) + 1
intervening_words = number of words between first and last words of term

in string
log_intervening_words = log (intervening_words + 1) + 1
weight = term_words_present * log_termjlength / log_intervening_words

sort Meta terms in master list
if CUI is true then
eliminate all LUI's which have a common CUI with a higher-ranked LUI

eliminate all terms below size cut-off
eliminate all terms below weight cut-off

Figure 1 -- Pseudocode for the new concept-matching algorithm

Implementation

The server currently runs under Unix on a Sun Sparc
20, although nothing about the implementation is
Sun- or Unix-specific. It is implemented in C, using
a B-Tree package (Faircom Corp.) for data
management routines. The network communication
protocol is TCP/IP, so that any machine on the
Internet can access the server. The algorithm
processes a sentence to a ranked list of Metathesaurus
terms in 3-6 seconds. Any speed bottlenecks are
typically caused by network communication
slowdowns.

A variety of clients have been created to access the
server. Clients written in C and run from the
command-line have been created for Unix and the
Apple Macintosh. A colleague was able to quickly
implement a client running under Macintosh
Common Lisp with less than a page of code (personal
communication, Douglas Bell). Finally, a Common
Gateway Interface (CGI) has been implemented to
allow access from a forms page on the World Wide
Web (WWW) with URL http://www.ohsu.edu/post-
saphire.html. Other applications that want to utilize
SAPHIRE's algorithm can embed the calls to the
server directly in their code.

860

calcium blockers -

L0006684 1.399075 Calcium Channel Blockers
L0006675 1.000000 Calcium

blood pressure is high -

2 . 098612
1. 693147
1. 693147
1.399075
1.399075

Blood
Blood
Blood
Blood
Blood

Pressure, High
Pressure <1>
Pressure <2>
Pressure Determination
pressure, abnormal

congestive failure -

L0018802 1.399075 Heart Failure, Congestive
L0182446 1.193147 Rheumatic heart failure (congestive)

vitamin a -

1. 693147
1.399075
1.399075
1.399075
1.399075

Vitamin A
Vitamin A Aldehyde
Vitamin A Acid
Vitamin A Deficiency
anhydrovitamin A(2)

aortic stenosis

1. 693147
1.399075
1.399075
1.399075
1.399075

Aortic Stenosis
Aortic Stenosis, Supravalvular
Aortic Subvalvular Stenosis
Aortic Valve Stenosis
Rheumatic aortic stenosis

Figure 2 -- Sample output from the server, with the matching LUI, weight, and string respectively. The weight is
calculated from the algorithm in Figure 1. The output is truncated at five terms.

Strings and commands are sent to the server in ASCII
format. Any command not preceded by a backslash
('\') is assumed to be a text string for concept-
matching. Commands are entered by using a

backslash followed by the letter of the command,
and arguments. The commands include:
* \c common word frequency cut-off (default = 270)

Example: \c500
* \t set CUI/LUI (default = LUI)

Example: \tcui
* \v set source vocabulary (default = ALL, otherwise
use designations from UMLS documentation)

Example: \vMSH93
* \x cut-off term weight (default = 1.0)

Example: \xO.85

A final command allows the display of the frequency
for each word in a string, with an asterisk identifying
whether or not it is designated as a common word:

\f display frequency of each word
Example: \facute leukemia
Returns:

517 acute*
232 leukemia

Future Plans

The future plans for the SAPHIRE server include
interfacing with other IR systems, different
applications, and UMLS resources. The first
undertaking will be to connect the server with back
ends of other IR systems. We are currently porting
the rest of the SAPHIRE search engine to run in

861

L0005827
L0005823
L0210934
L0005824
L0005826

L0042839
L0042841
L0042840
L0042842
L0051906

L0003498
L0003499
L0003500
L0003507
L0182431

client-server mode on the Internet, and will also be
able to interact with other search engines, such as
Salton's SMART system [14]. Before an operational
IR system is created, some questions remain to be
answered about the optimal approach for using the
new SAPHIRE concept-matching algorithm for
automated indexing. For example, optimal settings
will need to be determined for the weight and
common word cut-offs. It will be particularly
challenging to determine the former, as we aim to
maximize appropriate partial matches without
including inappropriate ones. This task will be done
using a large MEDLINE test collection that we
implemented last year [15].

The next undertaking will be to integrate the
SAPHIRE server with other applications, such as
DeSyGNER [13]. Virtually aily application running
on the Internet can use the server. Our final task will
be to interface with other UMLS resources on the
Internet, in particular the UMLS Knowledge Sources
server being developed at the National Library of
Medicine (NLM) [16]. Since the SAPHIRE server
does not store any of the other information present in
the Metathesaurus, such as attributes and occurrence
data, the NLM server will allow applications to
obtain that information after doing a SAPHIRE
concept-match from our server.

Client software availability

The C source code for the SAPHIRE client can be
obtained via anonymous FT1P from medir.ohsu.edu in
the directory pub/saphire. The OHSUMED test
collection can be obtained from the pub/ohsumed
directory.

Acknowledgments

This work was supported by Grant LM05307 and
Contract NO1-LM 13539 from the National Library of
Medicine.

References

1. Hersh WR, Greenes RA. SAPHIRE: An
information retrieval environment featuring concept-
matching, automatic indexing, and probabilistic
retrieval. Computers and Biomedical Research
1990;23:405-420.
2. Hersh WR. Evaluation of Meta- 1 for a concept-
based approach to the automated indexing and
retrieval of bibliographic and full-text databases.
Medical Decision Making 1991; I 1:S 120-S 124.
3. Hersh WR, Hickam DH, Haynes RB, McKibbon
KA. A performance and failure analysis of SAPHIRE
with a MEDLINE test collection. Journal of the

American Medical Informatics Association
1994;1:51-60.
4. Hersh WR, Hickam DH. Information retrieval in
medicine: the SAPHIRE experience. In: Greenes R,
ed. MEDINFO 95. Vancouver, BC: Elsevier Science,
1995:in press.
5. Hersh WR, Hickam DH, Leone TJ. Word,
concepts, or both: optimal indexing units for
automated information retrieval. In: Frisse M, ed.
Proceedings of the 16th Annual Symposium on
Computer Applications in Medical Care. Baltimore:
McGraw-Hill, 1992:644-648.
6. Funk ME, Reid CA. Indexing consistency in
MEDLINE. Bulletin of the Medical Library
Association 1983;71:176-183.
7. Evans DA. Pragmatically-structured, lexical-
semantic knowledge bases for unified medical
language systems. In: Greenes R, ed. Proceedings of
the 12th Annual Symposium on Computer
Applications in Medical Care. Washington, D.C.:
IEEE, 1988:169-173.
8. Borgman CL. Why are online catalogs hard to
use? Lessons learned from information retrieval
studies. Journal of the American Society for
Information Science 1986;37:387-400.
9. Lindberg DAB, Humphreys BL, McCray AT. The
unified medical language system project. Methods of
Information in Medicine 1993;32:281-291.
10. Sparck Jones K. A statistical interpretation of
term specificity and its application in retrieval.
Journal of Documentation 1972;28: 11-21.
11. Lin R, Lenert L, Middleton B, Shiffman S. A
free-text processing system to capture physical
findings: canonical phrase identification system
(CAPIS). In Clayton PD, ed. Proceedings of the 15th
Annual Symposium on Computer Applications in
Medical Care. Washington, D.C.: McGraw-Hill,
1991: 843-847.
12. Vries JK, Marshalek B, D'Abarno JC, Yount RJ,
Dunner LL. An automated indexing system utilizing
semantic net expansion. Computers and Biomedical
Research. 1992; 153-167.
13. Greenes RA, Deibel SRA. The DeSyGNER
knowledge management architecture: A building
block approach based on an extensible kernel.
Artificial Intelligence in Medicine 1991;3:95-1 11.
14. Salton G. Introduction to Modern Information
Retrieval. New York: McGraw-Hill, 1983.
15. Hersh WR, Buckley C, Leone TJ, Hickam DH.
OHSUMED: an interactive retrieval evaluation and
new large test collection for research. In: Croft W,
vanRijsbergen C, eds. Proceedings of the 17th
Annual International ACM Special Interest Group in
Information Retrieval, 1994:192-201.
16. McCray AT, Razi A. The UMLS Knowledge
Source Server. In: Greenes R, ed. MEDINFO 95.
Vancouver, BC: Elsevier Science, 1995: 144-147.

862

