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Abstract
The volume of published biomedical research, and therefore the underlying biomedical

knowledge base, is expanding at an increasing rate. Among the tools that can aid researchers in

coping with this information overload are text mining and knowledge extraction. Significant

progress has been made in applying text mining to named entity recognition, text classification,

terminology extraction, relationship extraction and hypothesis generation. Several research

groups are constructing integrated flexible text-mining systems intended for multiple uses. The

major challenge of biomedical text mining over the next 5–10 years is to make these systems

useful to biomedical researchers. This will require enhanced access to full text, better

understanding of the feature space of biomedical literature, better methods for measuring the

usefulness of systems to users, and continued cooperation with the biomedical research

community to ensure that their needs are addressed.

INTRODUCTION:
BACKGROUND AND
PURPOSE
The volume of published biomedical

research, and therefore the underlying

biomedical knowledge base, is

expanding at an increasing rate. While

scientific information in general has

been growing exponentially for several

centuries,1 the absolute numbers specific

to modern medicine are very

impressive. The MEDLINE 2004

database contains over 12.5 million

records, and the database is currently

growing at the rate of 500,000 new

citations each year.2 With such

explosive growth, it is extremely

challenging to keep up to date with all

of the new discoveries and theories

even within one’s own field of

biomedical research.

Biomedical research is divided into

highly specialised fields and subfields,

with poor communication between

disciplines.3 While this may be a necessary

pre-condition for the complex and

detailed research that biomedical science

requires, it also tends to narrow the

perspective, impeding the establishment

of connections between discoveries

arising from different research specialties.

With the recent sequencing of the human

genome, the addition of detailed genetic

information to biomedical research makes

the situation even more complicated,

since genetics may play a role in almost all

areas of health and disease and it is likely

that many connections between different

branches of medicine may be based on

related genomic mechanisms.

The goal of biomedical research is to

discover knowledge and put it to practical

use in the forms of diagnosis, prevention

and treatment. Clearly with the current

rate of growth in published biomedical

research, it becomes increasingly likely

that important connections between

individual elements of biomedical

knowledge that could lead toward

practical use are not being recognised

because there is no individual in a position

to make the necessary connections.

Methods must be established to aid

researchers and physicians in making

more efficient use of the existing research

and helping them take this research to

the next step along the path to practical

application. While manual curation and

indexing can be an aid to researchers

searching for appropriate literature, a
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recent study of the information content

of MEDLINE records by Kostoff et al.4

found a significant amount of conceptual

information present only in the abstract

field and missing from the MeSH terms.

This is not surprising since the

MEDLINE indexers and the MeSH

vocabulary, while broadly based, cannot

be expected to represent all of the

concepts of interest for all potential users.

Clearly, the full text of biomedical

literature contains a wealth of

information important to users that may

not be completely captured by reviewers

and curators.

Text mining and knowledge extraction

are ways to aid researchers in coping with

information overload. Text mining is

differentiated from both information

retrieval (IR) and text summarisation (TS)

in that while IR and TS focus on the

larger units of text such as documents,

text mining operates at a finer level of

granularity and examines the relationships

between specific kinds of information

contained both within and between

documents. Text mining is also

differentiated from full-blown natural

language processing (NLP) in that NLP

attempts to understand the meaning of

text as a whole, while text mining and

knowledge extraction concentrate on

solving a specific problem in a specific

domain identified a priori (possibly using

some NLP techniques in the process). For

example, text mining can aid database

curators by selecting articles most likely to

contain information of interest,5,6 or

potential new treatments for migraine

may be determined by looking for

pharmacological substances that are

associated with biological processes

associated with migraine.7,8

The goal of biomedical text mining is

therefore to allow researchers to identify

needed information more efficiently,

uncover relationships obscured by the

sheer volume of available information,

and in general shift the burden of

information overload from the researcher

to the computer by applying

algorithmic, statistical and data

management methods to the vast

amount of biomedical knowledge that

exists in the literature as well as the free

text fields of biomedical databases.

This paper surveys the state of the art in

biomedical text mining over the past 18–

24 months. The next section covers

current active areas of research, including

the specific problems that are being

addressed and the approaches used. This is

followed by an examination of the current

issues and future challenges of biomedical

text mining.

CURRENT AREAS OF
RESEARCH
While other authors have proposed

categorisations based on stages of

information extraction of increasing

sophistication,9 here recent work is

grouped pragmatically with separate

categories for each distinct type of text-

mining task. This is because current work

centres around several common text-

mining themes.

Named entity recognition
At first glace, the task of named entity

recognition (NER) appears

straightforward. The goal is to identify,

within a collection of text, all of the

instances of a name for a specific type of

thing: for example, all of the drug names

within a collection of journal articles, or

all of the gene names and symbols within

a collection of MEDLINE abstracts.

Hansich and de Bruijn and coworkers9,10

believed that solving this problem would

allow more complex text-mining tasks to

be addressed. The idea is that recognising

biological entities in text allows for

further extraction of relationships and

other information by identifying the key

concepts of interest and allowing those

concepts to be represented in some

consistent, normalised form.

This task has been challenging for

several reasons. First, there does not exist

a complete dictionary for most types of

biological named entities, so simple text-

matching algorithms do not suffice. In

addition, the same word or phrase can

The goal of biomedical
text mining is to shift
the burden of
information overload
from the researcher to
the computer

Recognising biological
entities in text allows
for further extraction of
relationships and other
information by
identifying the key
concepts of interest
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refer to a different thing depending upon

context (eg ferritin can be a biological

substance or a laboratory test).

Conversely, many biological entities have

several names (eg PTEN and MMAC1

refer the same gene). Biological entities

may also have multi-word names (eg

carotid artery), so the problem is

additionally complicated by the need to

determine name boundaries and resolve

overlap of candidate names.

Because of the potential utility and

complexity of the problem, NER has

attracted the interest of many researchers,

and there is a tremendous amount of

published research in this topic. With the

large amount of genomic information

being generated by biomedical

researchers, it should not be surprising

that in the genomics era, much of the

work in biomedical NER has focused on

recognising gene and protein names in

free text.

The approaches generally fall into three

categories: lexicon-based, rules-based and

statistically based. Combined approaches

also have been used. The output may be a

set of tags assigning a predicted type to

each word or phrase of interest, as in

part-of-speech (POS) tagging,11 or as a

score designating the confidence that a

word or phrase is of a given type of

interest. Systems are typically measured in

terms of precision (number of correct

predictions divided by total number of

predictions) and recall (number of correct

predictions divided by number of actual

named entities in the text). Precision and

recall are often combined into a single

measure, either using the F-score, defined

as the harmonic mean of precision and

recall (2PR/[P+R]),12 or by reporting the

balanced precision and recall, defined as

the point where precision and recall are

equal.

One of the most successful rules-based

approaches to gene and protein NER in

biomedical texts has been the AbGene

system of Tanabe and Wilbur.13 It has

been used as the NER component in

extracting relationships by several other

researchers.14,15 AbGene works by

extending the Brill POS tagger11,16,17 to

include gene and protein names as a tag

type with the system trained on 7,000

hand-tagged sentences from biomedical

text. AbGene then applies manually

generated post-processing rules based on

lexical-statistical characteristics that help

further identify the context in which gene

names are used and eliminate false

positives and negatives. The system

achieved a precision of 85.7 per cent at a

recall of 66.7 per cent.

In contrast to the tagging approach

used by Tanabe and Wilbur, Chang et al.

created the GAPSCORE system,18 which

assigns a numerical score to each word

within a sentence by examining the

appearance, morphology and context of

the word and then applying a classifier

trained on these features. Words with

higher scores are more likely to be gene

and protein names or symbols. After

training on the Yapex corpus,19 precision,

recall and F-score were computed for

both the exact matches and ‘sloppy’

matches (defined as a true positive if any

part of gene name is predicted correctly),

with the system performing much better

with sloppy matches (precision 74 per

cent, recall 81 per cent, F-measure 77 per

cent), than with exact matches (precision

59 per cent, recall 50 per cent, F-measure

54 per cent).

A number of other groups have

worked in this area. Hanisch et al. used a

large dictionary of gene and protein

names and semantically classified words

that tend to appear in context with

protein names, reporting a specificity of

95 per cent and sensitivity of 90 per

cent.10 Zhou et al. trained a hidden

Markov model (HMM) on a set of

features based on word formation (ie

capitalisation), morphology (ie prefix and

suffix), POS, semantic triggers (head

nouns and verbs) and intra-document

name aliases.20 They reported an overall

precision of 66.5 per cent at a recall of

66.6 per cent on the GENIA corpus.21

Other gene and protein NER systems

include those by Narayanaswamy et al.,22

Settles 23 and Mika and Rost.24

Approaches to NER
generally fall into three
categories: lexicon-
based, rules-based and
statistically-based
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Chen and Friedman have adapted the

MEDLEE system to recognise phrases

that correspond to phenotype information

within biomedical text.25 This system uses

natural language techniques to identify

phenotypic phrases present in journal

article abstracts, and recognises phrases

containing words separated in the text.

This area of biological NER is much less

well studied than recognising gene,

protein or chemical names, and therefore

a smaller knowledge base of phenotype-

associated terms is available. Nevertheless,

the investigators were able to

automatically import thousands of UMLS

terms associated with semantic categories

such as cellular body functions and

cellular dysfunction, as well as several

hundred terms from the Mammalian

Ontology. A few hundred other terms

were added manually. In a feasibility study

of 300 documents, the system achieved a

precision of 64.0 per cent with a recall of

77.1 per cent. While, as expected for a

new area of study, this performance is

lower than that of the gene and protein

NER systems, these results were found to

be about the same as that of the individual

experts used to create the study’s gold

standard.

Overall, the performance of state-of-

the-art gene and protein NER systems

achieves F-scores between 75 and 85 per

cent. This number is consistent with that

found by Hirschman et al. in 2002,12 and

the results of Task 1A for the 2004

BioCreative workshop.15 While peak

performance does not appear to have

increased over the past few years,

investigators are obtaining consistent

results using a variety of approaches on

different data sets.

To address this performance plateau

and to decrease the computational burden

contribution of NER to text mining,

Tanabe and Wilbur have used AbGene to

generate a large and high-quality gene and

protein lexicon of names found in

biomedical text.26 The application of

AbGene to the MEDLINE database has

resulted in an initial collection of over

two million putative gene and protein

names. This list was purified by applying

thematic analysis to the names, and then

using inductive logic programming to

learn rules for differentiating gene names

from non-gene names within a theme.

Finally, a simple false-positive filter was

applied that removed obviously incorrect

names such as those containing ‘http’ or

ending in ‘tion’. Their approach yielded a

final set of 1,145,913 gene names.

Assessment of a random sample

determined the precision to be

approximately 82 per cent. Comparison

with a gold standard gave an estimated

recall of 61 per cent for exact matches and

88 per cent for partial matches.

The quality of this lexicon is about

equivalent to the performance of the

NER systems, and the large size of the

lexicon is a definite advantage. The

lexicon could be used with simple or

fuzzy matching to efficiently identify gene

and protein names as a first step in future

text-mining systems. However, the list

has been generated with a snapshot of

MEDLINE, and given the pace of

genomic research, will soon be out of

date if it is not updated. Also, the list was

built from MEDLINE and not from full

text articles, so it is possible that a

significant number of gene and protein

names exist in the literature and are not

found in MEDLINE.

It is a subject of current debate how

well NER must perform in order to be

useful for text mining.9,12 If one assumes

that relationship extraction requires

identification of three biomedical terms

(two entities and one relationship), the

performance of relationship extraction

should be approximately equal to the

cube of the performance of NER. This

independence assumption appears to be true

for news article extraction. Systems

performing named entity extraction on

news stories typically perform at an

F-score over 90 per cent, and the F-score

for new relations is about 75 per cent.

For many biomedical applications, the

F-score performance rates of relationship

mining has often been found to be

approximately equal to that of biological

Overall, the
performance of state-of-
the-art gene and
protein NER systems,
achieves F-scores
between 75 and 85
percent
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NER, rather than the 60 per cent

expected by the independence

assumption.27–32 Therefore, the

assumption does not seem to hold for

biological relations. It may be easier to

extract concepts in combination with the

relationship between them owing to the

increased local context that relationships

provide. While some form of NER is

useful in most text-mining tasks, the

performance level of biological NER is

not necessarily rate limiting for other

biological text-mining tasks. Nevertheless,

we have not reached the point of having

standard methods of NER or updated

lexicons for biomedical text mining

(whatever the asymptotic performance

level), so work must continue in this area.

Text classification
Text classification attempts to

automatically determine whether a

document or part of a document has

particular characteristics of interest,

usually based on whether the document

discusses a given topic or contains a

certain type of information. Typically the

information of interest is not specified

explicitly by the users and, instead, they

provide a set of documents that have been

found to contain the characteristics of

interest (the positive training set), and

another set that does not (the negative

training set). Text classification systems

must automatically extract the features

that help determine positives from

negatives and apply those features to

candidate documents using some kind of

decision-making process.

Accurate text classification systems can

be especially valuable to database curators,

who may have to review many

documents to find a few that contain the

kind of information they are collecting in

their database. Because more biomedical

information is being created in text form

then ever before, and because there are

more ongoing database curation efforts to

organise this information into coded

databases than before, there is a strong

need to find useful ways to apply text

classification methods to biomedical text.

Yeh et al. ran a text-mining

competition as part of the Knowledge

Discovery in Databases (KDD) Challenge

Cup 2002.6 The task was a curation

problem to evaluate papers from the

FlyBase data set and determine whether

the paper should be curated based on the

presence of experimental evidence of

Drosophila gene products. The best-

performing entry used a set of manually

constructed rules based on POS tagging, a

lexicon and semantic constraints

determined by examining the training

documents.33 The system focused on

figure captions, which were found to be

useful. An F-score of 78 per cent was

achieved on determining whether to

curate a paper based on the presence of

experimental evidence. Another effective

approach looked for manually chosen

‘keywords’ and computed the distance

between keywords and gene names.34

Two other well-performing systems used

regular expressions to find patterns of

words and then used a support vector

machine (SVM) to classify the papers.35

In related work, Donaldson et al. used

an SVM trained on the words in

MEDLINE abstracts to distinguish

abstracts containing information on

protein–protein interactions, prior to

curating this information into their BIND

database.36 They used the ‘bag-of-words’

approach with an SVM classifier. A small

evaluation with 100 abstracts found a

precision of 96 per cent with a recall of 84

per cent. They estimated that the

classification system would reduce the

number of abstracts that the curators

needed to read by about two-thirds.

Another investigation in this area used

a Probabilistic Latent Categoriser (PLC)

with Kullback–Leibler (KL) divergence

to re-rank documents returned by

PubMed searching for the purposes of

curating information into the Swiss-Prot

database.37 Evaluation showed a 25–45

per cent precision improvement, with a

balanced precision and recall point of

about 70 per cent, compared with about

40 per cent for the basic PubMed ranking.

Liu et al. performed a unique application

The independence
assumption does not
seem to hold for
biological relations

Accurate text
classification systems
can be especially
valuable to database
curators
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of text classification on figure captions. In

a pilot study, they classified the text in

figure legends in order to find figures

containing representations of protein

interactions and signalling events.38

Applying research in text classification

to the work processes of actual

biomedical curators and annotators is just

beginning. The Text Retrieval

Conference (TREC) 2004 Genomics

Track has a classification problem as one

of its tasks.39 The task is meant to

mimic the process that the human

annotators in the Mouse Genome

Informatics (MGI) system go through in

order to find documents that contain

experimental evidence about genes that

they are annotating using Gene

Ontology (GO) codes. A full text

collection in SGML format has been

assembled, realistically reflecting the

articles that MGI annotators currently

read. In additional, the utility measure

used to evaluate performance of the task

aims to reflect the priorities of the MGI

annotators. Because of the potential to

improve annotator productivity, work

on improving biomedical text

classification to meet the needs of

curators and other users must continue

for the foreseeable future.

Synonym and abbreviation
extraction
Paralleling the growth of the increase

in biomedical literature is the growth in

biomedical terminology. Because many

biomedical entities have multiple names

and abbreviations, it would be

advantageous to have an automated means

to collect these synonyms and

abbreviations to aid users doing literature

searches. Furthermore, other text-mining

tasks could be done more efficiently if all

of the synonyms and abbreviations for an

entity could be mapped to a single term

representing the concept. Most of the

work in this type of extraction has

focused on uncovering gene name

synonyms and biomedical term

abbreviations.

Several investigators have used gene

name synonym lists created from online

databases as a basis for further text

mining.36,40,41 However, these gene

databases focus on official names and

alternates, and are incomplete with

respect to the gene names actually found

in the literature.42,43 In order to create

gene and protein name synonym lists

representative of the names used in the

literature, Yu and Agichtein44 and

Cohen45 have investigated automatic

means of extracting gene name

synonyms from biomedical free text. Yu

and Agichtein applied a combination of

four algorithms to full text journal

articles. Their system combined the

AbGene gene NER system, with

statistical, SVM classifier-based,

automatic pattern-based and manual rules

algorithms. The combined system

produced a recall of about 80 per cent

with a precision of about 9 per cent,

giving an overall F-measure of about 30

per cent. Cohen applied an automatic

pattern extraction method to MEDLINE

abstracts and a numeric analysis metric

on the resulting name co-occurrence

network to select the best synonym

extraction patterns. While no

sophisticated gene NER was used,

evaluation showed a precision of 23 per

cent, a recall of 21 per cent and an

F-score of 22 per cent. The system was

also notable for inferring synonyms based

on the logical relationship between

synonyms found explicitly in the text,

increasing recall by about 10 per cent

over the same system without inference.

Other investigators have applied text-

mining methods to extracting lists of

biomedical abbreviations and their fully

specified forms. These methods rely on

the proximity of full forms and their

abbreviations, and the fact that either the

full form or the abbreviation is often

enclosed in parentheses. The problem is

often reduced to finding the best

alignment of the characters in the

abbreviation to those in the full form. A

variety of alignment and scoring

methods have been applied to this basic

approach. Liu and Friedman used a large

Because of the potential
to improve annotator
productivity, work on
improving biomedical
text classification must
continue for the
foreseeable future
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collection of MEDLINE abstracts to

determine abbreviations and phrases that

were statistically significantly co-

located.32 They reported a precision of

96.3 per cent with a recall of 88.5 per

cent. Yu et al.46 and Schwartz and

Hearst28 applied manually created set of

pattern-matching rules to identify

abbreviations and their full form. Yu et

al. achieved a precision of 95 per cent

with 70 per cent recall, while Schwartz

and Hearst achieved a precision of 96

per cent at 82 per cent recall for a set of

1,000 MEDLINE abstracts mentioning

yeast. Chang et al. trained a logistic

regression model with abbreviation

specific features and used it to score

candidate full forms,47 achieving a

precision of 80 per cent with 83 per

cent recall on the Medstract corpus.48

The automatic extraction of

biomedical abbreviations and their

corresponding definition as used within

an individual journal article is close to

being a solved problem. Research

systems uniformly produce high

precision and recall. The next step is to

integrate these automated extraction

capabilities into user systems. For

example, an online dictionary of medical

abbreviations could be integrated into

PubMed to augment search queries. The

more general problem of resolving

common domain abbreviations

undefined in a given journal article is a

much more difficult problem dependent

on expert knowledge of the specific

field and additional, possibly subtle,

context from the surrounding text.

Gene and protein name synonym

extraction has proven to be a more

challenging problem. While an

automatically updated synonym list would

be of great value in augmenting literature

searching and text mining, the precision

of automatic extraction systems is low

enough to introduce an unacceptable

level of noise. However, work is being

undertaken to standardise the use of

official gene and protein names and

symbols,43 so this problem may lessen in

the future. On the other hand, there will

still be a large legacy of literature that uses

non-official names.

Relationship extraction
The goal of relationship extraction is to

detect occurrences of a prespecified type

of relationship between a pair of entities

of given types. While the type of the

entities is usually very specific (eg genes,

proteins or drugs), the type of relationship

may be very general (eg any biochemical

association) or very specific (eg a

regulatory relationship). Several

approaches to extracting relations of

interest have been reported in the

literature and are applicable to this work.

Manually generated template-based

methods use patterns (usually in the form

of regular expressions) generated by

domain experts to extract concepts

connected by a specific relation from

text.14 Automatic template methods

create similar templates automatically by

generalising patterns from text

surrounding concept pairs known to have

the relationship of interest.44,45 Statistical

methods identify relationships by looking

for concepts that are found with each

other more often than would be predicted

by chance.7 Finally, NLP-based methods

perform a substantial amount of sentence

parsing to decompose the text into a

structure from which relationships can be

readily extracted.31

In the current genomic era, most

investigation of this type has centred

around relationships between genes and

proteins. It is thought that grouping genes

by functional relationships could aid gene

expression analysis and database

annotation.49 Several researchers have

investigated the extraction of general

relationships between genes.

Genes can be grouped or clustered

based on how strongly they share words

in text containing their names.

Raychaudhuri et al. used a measure of

neighbour divergence to measure the

‘functional coherence’ of a group of

genes.49 They obtained 79 per cent

sensitivity at 100 per cent specificity for

distinguishing 19 true gene groups from

It is thought that,
grouping genes by
functional relationships
could aid gene
expression analysis and
database annotation
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1,900 randomly assembled groups of yeast

genes. They later extended their work to

include mouse, fly, worm and yeast genes

and obtained functional gene groups with

96, 92, 82 and 45 per cent sensitivity at

99.9 per cent specificity.50 Glenisson et al.

similarly investigated text-based gene

clustering using a vector space approach

and the k-medoids algorithm with a

cosine similarity metric.51 Wren and

Garner identified related genes by

analysing the cohesiveness and specificity

of the graph structure created by the

gene–gene co-occurrences in MEDLINE

records.27 They obtained similar results to

Raychaudhuri et al. of about 97 per cent

specificity at 85 per cent sensitivity.

Other research has concentrated

extracting specific kinds of relationships

between genes, protein, or other

biological entities. Gaizauskas et al.’s

Protein Active Site Template Acquisition

system (PASTA) uses type and POS

tagging along with manually created

templates and lexicons assembled from

biological databases to extract

relationships between amino acid residues

and their function within a protein.30

Balanced recall and precision was

approximately 82 per cent using a

manually annotated corpus of MEDLINE

abstracts as a gold standard. Albert et al.

used dictionaries of protein and

interaction terms to identify tri-

occurrences of two proteins and one

interaction within a sentence.41 Applying

this approach to the full MEDLINE

database looking for interactions between

proteins and nuclear receptors they found

3,308 positive interactions, giving a

precision of 22 per cent. McDonald et al.

combined a hybrid syntactic/semantic

grammar in a single parsing process to

extract a variety of gene pathway

relationships.29 Evaluation using 100

abstracts manually reviewed by a biologist

showed 61 per cent precision at 35 per

cent recall.

Extracting relationships between genes

or proteins and GO codes is a task with

immediate practical potential that has

received much attention lately. The

MeKE system of Chiang and Yu used GO

codes as a lexicon of function names,

combining it with a lexicon of gene and

gene product names from LocusLink, and

used a sentence alignment system to

determine patterns associated with

statements about gene function. They

then used the patterns with a Naive Bayes

classifier to extract sentences containing

information about gene product

function.52

Raychaudhuri et al. assigned GO codes

by training text classifiers to associate GO

codes with abstracts, and then assigning to

a gene the strongest maximum entropy

associated GO code from the abstracts in

which that gene appeared. Evaluation

using a subset of yeast genes and GO codes

showed that the strongest predicted GO

code was accurate about 72 per cent of the

time.53 Pan et al.’s Dragon TF association

miner system used linear discriminate

analysis on terms and neural networks to

create models that recognised abstracts

that contained information relating

transcription factors (TFs) with GO codes

and diseases. Balanced sensitivity and

specificity was about 80 per cent.54

Task 2 of the BioCreative 2004

workshop similarly focused on extracting

relevant GO codes for genes from free

text.15,55 The task was to identify text that

contained evidence for GO code

assignment and to predict the correct GO

code that should be assigned by that text.

The task was also notable in that full text

journal articles were used and the

evaluation was carried out by MGI

curators, who rated how useful the system

output was for annotation. In general, this

was a difficult task, and was rated very

hard by the annotators. System precision

ranged between 2 and 80 per cent, with

the average about 30 per cent. Recall was

not evaluated. Part of the difficulty was

that the systems had to get the text, the

gene and the GO code simultaneously all

correct, perhaps an unnecessarily high

standard.

A number of other investigators have

applied text mining to extract novel,

interesting relationships. Eskin and

Currently, the precision
and recall obtained for
relationship extraction
is dependent on the
type of relationship to
be extracted and
literature corpus to be
processed
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Agichtein combined text and sequence

mining with an SVM combined text and

genome sequence kernel to predict

protein subcellular localisation.56

Performance ranged from a precision of

87 per cent with 71 per cent recall for

proteins located in the cytoplasm to a

precision of 44 per cent with 21 per cent

recall for proteins located in the

peroxisomes. Srinivasan and Wedemeyer

have studied the relationship between a

disease’s incidence and the countries in

which it is studied.57 Kostoff used simple

MEDLINE querying to compute organ

cancer asymmetries and found very similar

results to numbers in the National Cancer

Institutes SEER database.58 Xu et al.

adapted MEDLEE to transform text into

coded data from pathology reports to

facilitate a breast cancer study.59

It is clear from the foregoing work that

some types of relationships are simpler to

extract than others. Very general, non-

specific relationships (eg gene groups)

seem to be fairly straightforward, while

very specific relationships that have to be

substantiated by the precise supporting

text (eg GO code assignment) remain

challenging. Since the value of identifying

very specific relationships with

accompanying supporting text is high, this

work must receive continued attention.

Hypothesis generation
While relationship extraction focuses on

the extraction of relationships between

entities explicitly found in the text,

hypothesis generation attempts to

uncover relationships that are not present

in the text but instead are inferred by the

presence of other more explicit

relationships. The goal is to uncover

previously unrecognised relationships

worthy of further investigation.

Practically all of the work in hypothesis

generation makes use of an idea

originated by Swanson in the 1980s called

the ‘complementary structures in disjoint

literatures’ (CSD).60 Swanson realised that

large databases of scientific literature

could allow discoveries to be made by

connecting concepts using logical

inference. He proposed a simple ‘A

influences B, and B influences C,

therefore A may influence C’ model for

detecting instances of CSD that is

commonly referred to as Swanson’s ABC

model.3,61 In several published papers in

the 1980s and early 1990s, Swanson gave

examples of discovering new hypotheses

by manually connecting concepts

between journal articles. In 1986, he

found a connection implying patient

benefit between fish oil and Raynaud’s

syndrome, two years before clinical trials

established that the benefit was real.8,62 In

another article, he traced 11 indirect

connections between migraine and

magnesium using summarisations of

published articles60 that were later

experimentally verified.63,64

While Swanson applied his model

manually, several investigators have tried

to automate the process. Automated

hypothesis generation systems may

generate many potential hypotheses, and

therefore some method of evaluating

these systems is necessary. One way these

evaluations have been done is by

attempting to recreate Swanson’s

discoveries. Gordon and Lindsay were

probably the first to use this approach,65

followed a few years later by Weeber et

al.3 More recently, Srinivasan has used

this approach to demonstrate the

feasibility of her approach based on

MeSH terms and UMLS semantic types.66

Another way that hypothesis discovery

systems are evaluated is by manually

reviewing the literature supporting the

extracted hypothesis for scientific

plausibility and relevance. This is a natural

next step after reproducing Swanson’s

discoveries. Using their ‘literature-based

scientific discovery tool’ that examined

term co-occurrences in MEDLINE titles

and abstracts, Weeber et al. found

potential new uses for thalidomide.61

Srinivasin et al. continued to refine their

system, discovering implicit evidence of a

therapeutic effect of Curcuma longa

(turmeric), on retinal diseases, Crohn’s

disease and spinal cord injuries.67,68

The combined increase in scientific

Extraction of very
general, non-specific
relationships appears to
be straightforward

Current work in
hypothesis generation
makes use of
‘complementary
structures in disjoint
literatures’
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literature and genome expression data

may leave many scientists with the

uneasy feeling that important discoveries

are buried under the information

explosion, such that computerised tools

to help them sort through the vast

amount of available information.12,68

While hypothesis discovery systems are

not yet a standard tool of biologists, one

day they may be. Continued work is

needed to enhance these systems to

handle the vast amounts of different types

of data that scientists currently must

explore manually. Additionally, better

methods are needed to evaluate and

compare the results of these systems so

that improvement can be documented

and clear choices can be made.

Integration frameworks
Several research groups are developing

integrated text-mining frameworks

intended to be able to address a variety of

user needs. The MedScan system of

Novichkova et al. combines lexicons

with syntactic and semantic templates

into a general-purpose text-mining

system to extract relationships between

biomedical entities.69 Glenisson et al.

have developed TXTGate which

performs gene-based text profiling and

clustering using the information

contained on multiple

on-line biological databases.70 Becker et

al. created PubMatrix, a tool that displays

two-dimensional comparisons of gene

names and functional terms based on

combining the results of multiple queries

to PubMed.71 The BioRAT system of

Corney et al. is another template-based

system that combines a template design

tool with a web spider that locates and

retrieves full text journal articles.72 The

Textpresso system of Müller et al. uses a

specially created ontology to flexibly

combine keyword and concept co-

occurrence searching of Caenorhabditis

elegans (a small nematode worm)

literature at the sentence level.73 Other

generalised text-mining frameworks have

been reported by Nenadic et al.74 and

Chiang et al.40

All these systems are still in the research

and development phase. At this point

evaluations tend to be brief and these

systems have not been subjected to

thorough user evaluations. It remains to

be seen whether these systems will address

the needs of the biomedical research

community, but it is clear that they are a

step towards addressing the needs of

biomedical researchers beyond those

served by search engines such as PubMed

and Google.

CHALLENGES, FUTURE
DIRECTIONS AND
CONCLUSIONS
From all of the foregoing, it is clear that

biomedical text mining has great

potential. However, that potential is yet

unrealised. Text-mining tools are not part

of the standard arsenal of the biomedical

researcher in the way that search engines

and sequence alignment tools are. The

major challenge for the next 5–10 years

of text-mining work is the creation of

text-mining tools to provide a clear

benefit to these researchers, allowing

them to be more productive given

increasing challenges due to information

growth. The focus must be more on

helping biomedical researchers to solve

real-world problems that are inhibiting

the pace of research and less on

evaluations based on system output

independent of meeting user needs.

Advances on several fronts are necessary

for this to become a reality.

First, there must be greater access to

full text and test collections that use it.

Much of the scientific information

contained in journal articles is not present

or mentioned in abstracts or MeSH

terms.14 Text-mining research has

recently been moving away from abstracts

and titles towards full text, but access to

full text is still often limited by copyright

restrictions,39,55 preventing work from

being done or reproduced. The research

community must work with publishers to

make a wider range of content available

to text-mining applications.

Next, more work is necessary to

Hypothesis discovery
systems are not yet a
standard tool of
biologists

Greater access to full
text collections is
essential to progress in
biomedical text-mining
research
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determine what features and types of

features are useful in addressing particular

text-mining tasks. The feature space

available to text mining is large, and

includes a huge array of feature types

including (but not limited to) words,

concepts, headings, formatting, authors,

references and links. The bag-of-words

approach (both stemmed and unstemmed)

has been popular for quite a long time,

largely because it is easily applied to text

from a large variety of sources. However,

this approach ignores document positional

and sectional information and may not

result in the most discriminating feature

set from fully marked-up text that

provides this information. Using concepts

as a basic unit instead of words has been

shown to be practical75 and useful.76,77

Including other contexts, such as the

section in which the text occurs, has also

been shown to help.44,78 Full text with

XML mark-up may provide many more

possible features and feature types than

plain text. The potential feature space of

XML full text has only begun to be

explored. With such a wide range of

possible features and feature types,

additional analytical methods are needed

to determine the optimal feature set for a

particular application.

Text-mining researchers also need to

better understand what measures can be

used to assess value to actual users, and

how to tailor their algorithms to meet

their needs. It is well known in

information retrieval that increases in

precision or recall do not necessarily

correlate with user success in the

searching task.79 As such, simply

optimising these metrics may not result in

systems that meet users’ needs. The triage

task of the TREC 2004 Genomics Track

begins to address this with an evaluation

measure based on estimating the utility of

MGI’s current triage process.39 Other

researchers have addressed this as well.36

In order to design systems that deliver

value to biomedical researchers, much

more work is needed in the area of

creating evaluation metrics and methods

that measure the real-world value of text-

mining systems. This is an especially

challenging problem for hypothesis

generation systems, eg how does one

measure the value of an untested set of

hypotheses? Nevertheless, robust

evaluation measures are necessary to

compare hypothesis generation systems,

determine the best approaches and

improve the state of the art of these

systems. Verifying that these systems

produce suggestions that biomedical

researchers are motivated to

experimentally test is especially important.

Finally, the approach of shared

challenge tasks with consistent evaluation

based on biomedical domain expertise

must continue. More progress must be

made toward choosing tasks and

evaluating results based on real-world

needs. Recent examples of this type of

cooperation include the BioCreative 2004

workshop, and the TREC Genomics

Track, both of which used assessments

made by biological database curators in

their normal workflow processes as the

gold standard.

Clearly, the main theme for future

progress is interdisciplinary coordination

and cooperation. Text-mining researchers

must work with each other, publishers

and biomedical researchers to begin to

meet user needs with systems that produce

consistent, measurable and verifiable

results. This is an exciting time in

biomedical text mining, full of promise.

Researchers must lead the coordination

effort to realise the full scientific potential

of biomedical text mining.
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