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Opportunities for secondary use or re-use of
clinical data for research and other purposes

Caveats of using operational clinical data

Recommendations for using operational
clinical data

Need for standards and interoperability
Role of informatics professionals
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US has made substantial investment in
health information technology (HIT)

@}\\N.com [ “To improve the quality of our health care while lowering
BB oo vs. poumes crme eurenma its cost, we will make the immediate investments
Hot Topics » U.S. Economy - Movies - Gaza - Consume necessary tO ensure that Wlthln ﬁve years/ a” Of

America’s medical records are computerized ... It just

won’t save billions of dollars and thousands of jobs — it

will save lives by reducing the deadly but preventable

medical errors that pervade our health care system.”
January 5, 2009

Health Information Technology for Economic and Clinical
Health (HITECH) Act of the American Recovery and

cxzi ™™ Reinvestment Act (ARRA) (Blumenthal, 2011)

Obama's big idea: Digital * Incentives for electronic health record (EHR) adoption

health records . .

R e R TS by physicians and hospitals (up to $27B)

I * Direct grants administered by federal agencies ($2B,

AT e St including $118M for workforce development) .

212,000 jobs could be created by this program,

CNNMoney reports. full sto L)Rfkrv(“\
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Percent

Which has led to significant EHR
adoption in the US

(Hsiao, 2014)
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Providing opportunities for “secondary
use” or “re-use” of clinical data

(Safran, 2007; SHARPn, Rea, 2012)
* Using data to improve care delivery

* Healthcare quality measurement and
improvement

e Clinical and translational research
e Public health surveillance
* Implementing the learning health system
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Using data to improve healthcare

* With shift of payment from “volume to value,”
healthcare organizations will need to manage
information better to provide better care (Diamond,
2009; Horner, 2012)

* Predictive analytics is use of data to anticipate poor
outcomes or increased resource use — applied by many
to problem of early hospital re-admission (e.g.,
Gildersleeve, 2013; Amarasingham, 2013; Herbert,
2014)

* Arequirement for “precision medicine” (Mirnezami,
2012) and “personalized medicine” (Altman, 2012)
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Quality measurement and
improvement

* Quality measures increasingly used in US and
elsewhere to make care more “accountable”
— Used more for process than outcome measures (Lee,
2011), e.g., Stage 1 meaningful use
* In UK, pay for performance schemes achieved early
value but fewer further gains (Serumaga, 2011)

* In US, some quality measures found to lead to
improved patient outcomes (e.g., Wang, 2011), others
not (e.g., Jha, 2012)

* Desire is to derive automatically from EHR data, but
this has proven challenging with current systems
(Parsons, 2012; Pathak, 2013; Barkhuysen, 2014)
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Clinical and translational research

* Led in part by activities of NIH Clinical and
Translational Science Award (CTSA) Program
(Mackenzie, 2012)

* One of largest and most productive efforts has
been eMERGE Network — connecting genotype-
phenotype (Gottesman, 2013; Newton, 2013)

— http://emerge.mc.vanderbilt.edu

— Has used EHR data to identify genomic variants
associated with atrioventricular conduction
abnormalities (Denny, 2010), red blood cell traits
(Kullo, 2010), white blood cell count abnormalities
(Crosslin, 2012), thyroid disorders (Denny, 2011), etc.
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Clinical and translational research
(cont.)

Other successes include replication of clinical studies,
e.g.,
— Randomized controlled trials (RCT)

* Women'’s Health Initiative (Tannen, 2007; Weiner, 2008)

* Other cardiovascular diseases (Tannen, 2008; Tannen, 2009) and
value of statin drugs in primary prevention of coronary heart
disease (Danaei, 2011)

— Observational studies

* Metformin and reduced cancer mortality rate (Xu, 2014)
Much potential for using propensity scores with
observational studies as complement to RCTs

— Often but not always obtain same results as RCTs
(Dahabreh, 2014)
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Public health

“Syndromic surveillance” aims to use data sources for
early detection of public health threats, from
bioterrorism to emergent diseases

Interest increased after 9/11 attacks (Henning, 2004;
Chapman, 2004; Gerbier, 2011)

Ongoing effort in Google Flu Trends

— http://www.google.org/flutrends/

— Search terms entered into Google predicted flu activity but
not early enough to intervene (Ginsberg, 2009)

— Performance in recent years has been poorer (Butler,
2013)

— Case of needing to avoid “Big Data hubris” (Lazer, 2014)
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Implementing the learning healthcare
system (ONC, 2014)

Individuals Access HIT for Quality and Population Health Biz: Data and
& Share Health Safety in Care Management and Regional En vt
Information Delivery Information Exchange alyties

Quality Measures Public Health Clinical Research
Technical Standards and Services
Certification of HIT to Accelerate Interoperability
Privacy and Security Protections

Patient Practice Population Public
Supportive Business, Clinical, and Regulatory Environments

Rules of Engagement and Governance

Clinical
Guidelines

Public
Health Policy

Clinical Decision
Support
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Caveats for the Use of Operational Electronic Health

Record Data in Comparative Effectiveness Research
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Operational clinical data may be (Medical Care, 2013):
* Inaccurate

* Incomplete

* Transformed in ways that undermine meaning

* Unrecoverable for research

* Of unknown provenance

* Of insufficient granularity

* Incompatible with research protocols
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Health Information Technology (ONC) through the Strategic
Health IT Advanced Research Projects (SHARP) Program,




Inaccurate

* Documentation not always a top priority for busy
clinicians (de Lusignan, 2005)

* Analysis of EHR systems of four known national leaders
assessed use of data for studies on treatment of
hypertension and found five categories of reasons why
data were problematic (Bayley, 2013)

— Missing

— Erroneous

— Un-interpretable

— Inconsistent

— Inaccessible in text notes

QD
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Incomplete

* Not every diagnosis is recorded at every visit; absence
of evidence is not always evidence of absence, an
example of a concern known by statisticians as
censoring (Zhang, 2010)

* Makes tasks such as identifying diabetic patients
challenging (Miller, 2004; Wei, 2013; Richesson, 2013)

* Undermine ability to automate quality measurement

— Measures under-reported based on under-capture of data
due to variation in clinical workflow and documentation
practices (Parsons, 2012)

— Correct when present but not infrequently missing in
primary care EHRs (Barkhuysen, 2014)
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“Idiosyncrasies” of clinical data
(Hersh, 2013)

“Left censoring” — First instance of disease in record
may not be when first manifested

“Right censoring” — Data source may not cover long
enough time interval

Data might not be captured from other clinical (other
hospitals or health systems) or non-clinical (OTC drugs)
settings

Bias in testing or treatment

Institutional or personal variation in practice or
documentation styles

Inconsistent use of coding or standards
OREGO
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Overcoming the caveats:
recommendations for EHR data use

4

(HerSh; 2013) Acad:myHeahh
Assessing and using
data :

Adaptation of “best e i

evidence” approaches

to use of operational g.j?%‘igmﬁii":a‘gh”%?c'{?deoii:?f Comparaie —
data - )ecliveness Researcl

Need for standards
and interoperability

Appropriate use of
informatics expertise
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Approach: adapt rules of evidence-
based medicine (EBM)?

* Ask an answerable question
— Can question be answered by the data we have?
* Find the best evidence
— In this case, the best evidence is the EHR data needed
to answer the question
* Critically appraise the evidence
— Does the data answer our question? Are there
confounders?
* Apply it to the patient situation
— Can the data be applied to this setting?
luki.)/}i'ifi(‘i\l
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Unscrambling Eggs and the Need for INFORMATICS PROFESSOR
Comprehensive Data Standards and e HE THOUGH ARIOUS TOF ELATED TO BIOMEDICAL

Interoperability

tly provided teachable
approach to standards
e value of health IT.
Fortunately, the Universal EHR? No. Universal Data Access? Yes.
has prioritized interoperability among its activities moving forward, A recent calls for a "universal EMR" for the entire

and other emerging work on standards provides hope that the problems  healthcare system. The author provides an example and correctly
Twill described that occurred locally (and T know occur many other
places) might be avoided in the future.

to the complete data abouta patient impedes
that quality improvement, clinical
mpeded by this situation as well.

health records (EHRs), personal health records (PHRs), and other
applications can emerge.

Uptake of health information exchange (HIE) less

than adoption of EHRs

* Hospitals 62% with outside organizations (Swain, 2014)

* Physicians 38% with outside providers (Furukawa, 2014)

* Costs and technical challenges still undermine
sustainability of HIE organizations (eHl, 2014)
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Challenges to EHRs and HIE have
spurred focus on interoperability

» Office of National Coordinator for Health IT (ONC)
developing interoperability road map for 10-year path
forward (ONC, 2014)

* Emerging approaches include
— RESTful architectures for efficient client-server interaction
— OAuth2 for Internet-based security

— Standard application programming interface (API) for
query/retrieval of data
* Need for both documents and discrete data

* Emerging standard is Fast Health Interoperability Resources (FHIR)
— http://wiki.hl7.org/index.php?title=FHIR_for_Clinical_Users
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ONC draft interoperability roadmap
(Galvez, 2014)

2017 2020 2024
. o Granular information e .
Providers and individuals access Longitudinal information
send, receive, find, use a Ubiquitous precision
basic set of essential Expanded sources and medicine
health information users of information

Reduced time from

o) Gy i evidence to practice

reduced cost
Virtuous learning cycle

Increased (and scalable) [y R

automation
Core technical standards and functions
Certification to support adoption and optimization of health IT products & services

Privacy and security protections for health information

Supportive business, clinical, cultural, and regulatory environments

Rules of engagement and governance
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Interoperability goals for 20177

* RESTful architecture with OAuth2 security

* FHIR APIs with some specified data standards

— For documents

* Consolidated Clinical Document Architecture (CCDA) with
standard metadata including document and section type
names

— For discrete data

* Use of mature terminology sets for diagnoses (ICD,
SNOMED), tests (LOINC), medications (RxNorm/RXTerms)

* National Library of Medicine Value Set Authority Center

(VSAC) for quality and other measures —
https://vsac.nlm.nih.gov
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Also need to develop clinical data
research networks

* Established
— HMO Research Network — facilitates clinical research
¢ www.hmoresearchnetwork.org

— FDA Mini-Sentinel Network — safety surveillance
* www.mini-sentinel.org

* New

— PCORnet — www.pcornet.org
¢ Clinical data research networks (CDRNs) — 11 networks
aggregating data on >1M patients each
— (Fleurence, 2014; Collins, 2014; and other papers in JAMIA
special issue)
¢ Common Data Model for subset of data

RQ
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Another need: contributions of a
competent informatics workforce

* Many roles for diverse professionals (Hersh, 2010)
* Opportunities

— Estimated need for 41,000 additional HIT professionals as we
moved to more advanced clinical systems (Hersh, 2008)

— Actual numbers hired were even higher (Furukawa, 2012;
Schwartz, 2013)

— Well-paying jobs! (HealthITJobs.com, 2014)
* Shortages

— 71% of healthcare ClOs said IT staff shortages could jeopardize
an enterprise IT project, while 58% said they would affect
meeting meaningful use (CHIME, 2012)

— More recent surveys paint continued picture of healthcare
organizations and vendors having challenges recruiting and

maintaining staff (HIMSS, 2014)
OREGON &)
HEALTH ez
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Job growth and salaries are high

Employment in health IT-
related occupations in the

450,000

396,216

201 2) 205,757

health delivery system: oo .
2005-2011 (Furukawa, oo : '
H 299,211 } >6OK!

o
§$$5 ws.ss, ll!ss TSSH,, .. B $
$111,648.73 $94,275.05 $81.574.31 $80,907.41 w $78,147.27 'n'$';2:éz7.27
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Opportunities for physicians:
clinical informatics subspecialty

* History
— 2009 — American Medical Informatics Association (AMIA)
develops and publishes plans for curriculum and training
requirements
— 2011 — American Board of Medical Specialties (ABMS)
approves; American Board of Preventive Medicine (ABPM)
becomes administrative home
* Subspecialty open to physicians of all primary specialties but not
those without a specialty or whose specialty certification has
lapsed
— 2013 — First certification exam offered by ABPM
* 455 physicians pass (91%)
— 2014 — ACGME fellowship accreditation rules released
* Four programs accredited nationwide, including OHSU
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Clinical informatics subspecialty (cont.)

* Following usual path of five years of
“grandfathering” training requirements to take
certification exam before formal fellowships
required

* Two paths to eligibility for exam in first five years

— Practice pathway — practicing 25% time for at least
three years within last five years (education counts at
half time of practice)

— Non-traditional fellowships — qualifying educational
or training experience, e.g., NLM, VA, or other
fellowship or educational program (e.g., master’s
degree)
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Clinical training model presents some
challenges

* Fragmentation and funding challenges (Detmer, 2014)
* Clinical fellowship model has some aspects of “fitting
square pegs into round holes” (Hersh, 2014)
* Requirement of two-year, full-time fellowship for board
certification may limit career paths
— Many clinicians pursue informatics in mid-career
* Many concerned about sustainability of funding
— Fellows may practice but CMS rules do not allow them to bill
* Informatics is not only for physicians — AMIA exploring
certification for others in informatics

— http://www.amia.org/advanced-interprofessional-informatics-
certification

Conclusions

* There are plentiful opportunities for secondary
use or re-use of clinical data

* We must be cognizant of caveats of using
operational clinical data

* We must implement best practices for using such
data

* We need consensus on approaches to standards
and interoperability

* There are opportunities for rewarding careers for
diverse professionals
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