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Our dysfunctional healthcare system and a vision
for fixing and optimizing it

Part of the solution includes adoption of
electronic health records (EHRs) and other
technologies

Toward the data-rich, information-driven
learning health system

Challenges in getting to such a system
The skills and workforce need to get there
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Our healthcare system is broken in
many ways and needs fixin’

_ « Action must be taken to address (Smith,
2012)

BEST CARE AT LOWER COST — $750B in waste (out of $2.5T system)

th to Continuously Learning — 75,000 premature deaths

Health Care in America ¢ Sources of waste — from Berwick (2012)
— Unnecessary services provided
— Services inefficiently delivered
— Prices too high relative to costs
— Excess administrative costs
— Missed opportunities for prevention

B — Fraud
* One vision for repair is the IOM’s
“learning healthcare system” (Smith,

2012)
http://www.iom.edu/Reports/2012/Best-Care-at-Lower-Cost-The- @
Path-to-Continuously-Learning-Health-Care-in-America.aspx lllgkrﬁ\l‘ _)
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Recommendations for Best Care,
Lower Cost (Smith, 2012)

* Foundational elements
— Digital infrastructure
— Data utility
* Care improvement targets
Clinical decision support
Patient-centered care
Community links
Care continuity
Optimized operations
* Supportive policy environment
— Financial incentives
— Performance transparency
— Broad leadership
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Health information technology (HIT) is
part of solution

* Systematic reviews (Chaudhry, 2006; Goldzweig,
2009; Buntin, 2011) have identified benefits in a
variety of areas

* Although 18-25% of studies come from a small
number of ‘health IT leader” institutions

Access to care —
Preventive care —

Care process —

Patient satisfaction —
Patient safety —
Provider satisfaction —
Effectiveness of care —

Efficiency of care —

Positive
Mixed-positive
Neutral

® Negative

(Buntin, 2011) 0

25 50
Number of study outcomes
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The world is adopting EHRs
(Schoen, 2012)
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Although advanced functionality is less
common (Schoen, 2012)

OUses EMR B Uses EMR with multifunctional HIT capacity
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electronic functions: order entry management, generating ( )RH;()\‘ )
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Why has it been so difficult to get
there? (Hersh, 2004)

Health Care Information Technology
Progress and Barriers

William Hersh, MD

e Cost

e Technical challenges

e Interoperability

e Privacy and confidentiality
e Workforce
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But now we have substantial

investment in HIT

CWN.com r

Hot Topics » U.S. Economy - Movies - Gaza - Consume

“To improve the quality of our health care while lowering
its cost, we will make the immediate investments
necessary to ensure that within five years, all of
America’s medical records are computerized ... It just
won’t save billions of dollars and thousands of jobs — it
will save lives by reducing the deadly but preventable
medical errors that pervade our health care system.”
January 5, 2009

Health Information Technology for Economic and Clinical
Health (HITECH) Act of the American Recovery and
Reinvestment Act (ARRA) (Blumenthal, 2011)

Obama's big idea: Digital

health records * Incentives for electronic health record (EHR) adoption
President-elect Barack Ob: 1t of hi ici 1
e e by physicians and hospitals (up to $278)
massive effort to modernize health care by i ini i
o  Direct grants administered by federal agencies (528,
512.000]0bs oo be raled b e pogra including $118M for workforce development)
CNNMoney reports. full stor OREGON
HEALTH
H &SCIENCE
UNIVERSITY

Setting the stage for a data-rich,
information-driven healthcare future

* Use of analytics and/or business intelligence (BI)
— Analytics is the use of data collection and analysis to
optimize decision-making (Davenport, 2010)

— Bl is the “processes and technologies used to obtain
timely, valuable insights into business and clinical

data” (Adams, 2011)
* As in many areas of advanced information and
technology, healthcare and biomedicine are

behind the curve of other industries (Miller,
2011; Rhoads, 2012)
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Who employs analytics and Bl outside
of healthcare?

Amazon and Netflix recommend books and movies with great
precision

Many sports teams, such as the Oakland Athletics and New England
Patriots, have used “moneyball” to select players, plays, strategies,
etc. (Lewis, 2004; Davenport, 2007)

Facebook can target advertising (Ugander, 2011) and predict your
location, political views, sexual preferences, and intelligence
(Kosinski, 2013)

Twitter volume and other linkages can predict stock market prices
(Ruiz, 2012), though may be more effective at spreading
misinformation (Salathe, 2013)

Recent US election showed value of using data: re-election of

President Obama (Scherer, 2012) and predictive ability of Nate
Silver (Salant, 2012)
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Levels of Bl (Adams, 2011)

Py

therapeutic approaches outcome?

Predictive modelin Identify high-risk i if..?
g patients What will happen next if... 7

issues

Optimization Diagnostic and How can we achieve the best Prescriptive

Degree of Forecasting Public health What if these trends continue? Predictive

Competitive
Advantage
and

Simulation Business
processes

What could happen if...?

Complexity Infection

outbreaks

: “Slice and
Query/drill-down

Alerts

When are actions needed?

What exactly is the problem?

! Descriptive
Ad hoc reporting How many, how often, where?
Standard reporting What happened?
Bl Type Example Uses Questions Answered Bl Level
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Analytics part of larger “secondary
use” or “re-use” of clinical data

* Many secondary uses or re-uses of electronic
health record (EHR) data (Safran, 2007); these
include

— Using data to improve care delivery — predictive
analytics

— Healthcare quality measurement and improvement

— Clinical and translational research — generating
hypotheses and facilitating research

— Public health surveillance — including for emerging
threats

— Implementing the learning health system

Q
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Using data analytics to improve
healthcare

* With shift of payment from “volume to value,”
healthcare organizations will need to manage
information better to provide better care
(Diamond, 2009; Horner, 2012)

* Being applied by many now to problem of early
hospital re-admission, in particular within 30 days
(Sun, 2012; Gildersleeve, 2013)

* Prediction not only of patient response but also
behavior, e.g., regimen adherence (Steffes, 2012)

* Arequirement of coming “precision
medicine” (Mirnezami, 2012)

Q
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Quality measurement and
improvement

Quality measures NaF Memure Mumber8 POR! | Cjpica Qualty Messure Tite
|ncreas|ng|y used Core Clinical Quality Meas ures
H y Hypertension: Blood Pressure
I n U S a n d NQF 0013 Myeasuremlenl !
Preventive Care and Screening Measure
e I SeW h e re NQF 0028 Pair: a) Tobacco Use Asseslsmenl b)
Tobacco Cessation Intervention
Use has been MOre |naros21 Pari 128 Adult Weight Screening and Follow-up
Alternate Clinical Quality Measures
for process than
NQF 0024 Weight Assessment and Counseling for
outcome measures Children and Adolescents
Preventive Care and Screening: Influenza
g
NQF0041 PQRI 110 Immunization for Patients 50 Years Old or
(Lee, 2011), e.g., e
Stage 1 m ea n i ngfu I NQF 0038 Childhood Immunization Status
use
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Quality measurement and
improvement

In UK, pay for performance schemes achieved
early value but fewer further gains (Serumaga,
2011)

In US, some quality measures found to lead to
improved patient outcomes (e.g., Wang,
2011), others not (e.g., Jha, 2012)

Desire is to derive automatically from EHR
data, but this has proven challenging with
current systems (Parsons, 2012; Kern, 2013)

QD
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Clinical and translational research

* Led in part by activities of NIH Clinical and Translational
Science Award (CTSA) Program (Mackenzie, 2012)

* eMERGE Network — connecting genotype-phenotype,
http://emerge.mc.vanderbilt.edu
— Has used EHR data to identify genomic variants associated with
atrioventricular conduction abnormalities (Denny, 2010), red
blood cell traits (Kullo, 2010), while blood cell count
abnormalities (Crosslin, 2012), thyroid disorders (Denny, 2011),
etc.

* Other successes include replication of RCTs findings of
— Women's Health Initiative (Tannen, 2007; Weiner, 2008)

— Other cardiovascular diseases (Tannen, 2008; Tannen, 2009)
and value of statin drugs in primary prevention of coronary
heart disease (Danaei, 2011)
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Public health

* “Syndromic surveillance” aims to use data
sources for early detection of public health
threats, from bioterrorism to emergent diseases

* Interest increased after 9/11 attacks (Henning,
2004; Chapman, 2004; Gerbier, 2011)

* One notable success is Google Flu Trends (
http://www.google.org/flutrends/) — search
terms entered into Google predicted flu activity
but not enough to intervene (Ginsberg, 2009);
last year, performance was poorer (Butler, 2013)
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Implementing the learning healthcare
system (Greene, 2012)

Collect data and
analyze results to
show what does and
does not work

Disseminate %
. Share results to improve care
In a leaming foraveryone
health care system,

research influences 7
practice and

practice influences
research Internal and External Scan

Identify problems and potentially
innovative solutions
- \
i
ign care an
generats

External

Apply the plan
in pilot and
control settings

Internal

Caveats for use of operational EHR
data (Hersh, 2013) — may be

* Inaccurate

* Incomplete

* Transformed in ways that undermine meaning
* Unrecoverable for research

e Of unknown provenance

* Of insufficient granularity

* Incompatible with research protocols
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Inaccurate

* Documentation not always a top priority for busy
clinicians (de Lusignan, 2005)

* Data entry errors in a recent analysis in the
English National Health Service (NHS) — yearly
hospital statistics showed approximately
(Brennan, 2012)

— 20,000 adults attending pediatric outpatient services

— 17,000 males admitted to obstetrical inpatient
services — mainly due to male newborns (Roebuck,
2012)

— 8,000 males admitted to gynecology inpatient services

QD
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Inaccurate (cont.)

* Analysis of EHR systems of four known national
leaders assessed use of data for studies on
treatment of hypertension and found five
categories of reasons why data were problematic
(Savitz, 2012)

— Missing

— Erroneous

— Un-interpretable

— Inconsistent

— Inaccessible in text notes

Q
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Incomplete

* Not every diagnosis is recorded at every visit; absence
of evidence is not always evidence of absence, an
example of a concern known by statisticians as
censoring (Zhang, 2010)

* Quality measures under-reported based on under-
capture of data due to variation in clinical workflow
and documentation practices (Parsons, 2012)

* Ability to identify diabetic patients successively
increased as time frame of assessing records was
increased from one through ten years of analysis (Wei,
2013)

QD
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Incomplete (cont.)

 Studies of health information exchange (HIE)

— Study of 3.7 million patients in Massachusetts
found 31% visited two or more hospitals over five
years (57% of all visits) and 1% visited five or more
hospitals (10% of all visits) (Bourgeois, 2010)

— Analysis of 2.8 million emergency department
patients in Indiana found 40% had data at multiple
institutions (Finnell, 2011)
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Unrecoverable for research

Many clinical data are “locked” in narrative text reports
(Hripcsak, 1995; Hripcsak, 2012), including summaries of
care (D’Amore, 2012)

A promising approach for recovering these data for
research is natural language processing (NLP) (Nadkarni,
2011)

— Has been most successful when applied to the determination of

specific data elements, e.g., eMERGE studies (Denny, 2012)

State of the art for performance of NLP has improved
dramatically over the last couple decades, but is still far
from perfect (Stanfill, 2010)

— Still do not not know how good is “good enough” for NLP in
data re-use for research, quality, etc. (Hersh, 2005)
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Many data “idiosyncrasies”

“Left censoring”: First instance of disease in record
may not be when first manifested

“Right censoring”: Data source may not cover long
enough time interval

Data might not be captured from other clinical (other
hospitals or health systems) or non-clinical (OTC drugs)
settings

Bias in testing or treatment

Institutional or personal variation in practice or
documentation styles

Inconsistent use of coding or standards
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Most important requirement may be
changing healthcare system

* US healthcare system still mostly based on fee for service
model — little incentive for managing care in coordinated
manner

* Informatics tools can help in care coordination (Dorr, 2007;
Dorr, 2008)

* Primary care medical home (PCMH) might be first step to
improving value and providing incentive for better use of
data (Longworth, 2011)

» Affordable Care Act (ACA) implements accountable care
organizations (ACOs), which provide bundled, quality-
adjusted payments for conditions (Longworth, 2011)

— Being implemented statewide in Oregon Medicaid system

(Stecker, 2013)
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Another need is for

academic programs
leading in research and
education
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DMICE/IDL faculty areas of expertise
[ E=s ]

* Healthcare analytics
* Workflow redesign

evaluation methodologies

* Natural language processing,
machine learning, and
information retrieval

* Predictive Analytics for
Healthcare Process Redesign

* Usability for EHR Data and Users

* Population Management and

* Biomedical terminologies, Care Coordination Information
ontologies, and coding Systems
* Biomedical data structures, * Mobile Telemedicine
representation, and * Precision Medicine
normalization
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Conclusions

* A growing body of evidence supports EHR and
other IT to improve health and healthcare

* The world is gradually adopting EHRs and other IT

* The next step is to make use of the increasing
data through analytics and Bl to achieve the
learning healthcare system

* There are challenges, but also benefits, to this
use data-driven, information-driven evolution

* There is a growing need for research and
education in all areas of informatics
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For more information

Bill Hersh
—  http://www.billhersh.info
Informatics Professor blog
— http://informaticsprofessor.blogspot.com
OHSU Department of Medical Informatics & Clinical Epidemiology (DMICE)
—  http://www.ohsu.edu/informatics
—  http://www.youtube.com/watch?v=T-74duDDvwU
—  http://oninformatics.com
What is Biomedical and Health Informatics?
—  http://www.billhersh.info/whatis
Office of the National Coordinator for Health IT (ONC)
—  http://www.healthit.gov
American Medical Informatics Association (AMIA)
— http://www.amia.or|
National Library of Medicine (NLM)
— http://www.nlm.nih.gov
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