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Rationale

* Although focus in recent years has been on
electronic health record (EHR) implementation
and “meaningful use,” informatics work in the
future will shift to putting the data and
information to good use (Hersh, 2012)

* As the quantity and complexity of healthcare
data grow through EHR capture, genomics, and
other sources, the number of facts per clinical
decision will increase, requiring increasing help
for decision-makers (Stead, 2011)
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Definitions

* Both a buzz-word and an important emerging area

* Davenport (2007) — “the extensive use of data,
statistical and quantitative analysis, explanatory and
predictive models, and fact-based management to
drive decisions and actions”

* IBM (2012) — “the systematic use of data and related
business insights developed through applied analytical
disciplines (e.g. statistical, contextual, quantitative,
predictive, cognitive, other [including emerging]
models) to drive fact-based decision making for
planning, management, measurement and learning”
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Levels of analytics (Adams, 2011)

FS

Optimization Diagnostic and How can we achieve the best Prescriptive
therapeutic approaches outcome?
Predictive modeling BN What will happen next if...?

patients

Degree of | EESRSIRS Public hezlth What if these trends continue? Predictive
Competitive issues
Advantage . . :
9 Simulation Business What could happen if...?
and processes
Complexity Infection

Alerts When are actions needed?

outbreaks

. “Slice and :
Query/drill-down o What exactly is the problem? oy
g E 2 Descriptive
Out-of-ran
Ad hoc reporting How many, how often, where?
Standard reporting What happened?
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Related terms

* Machine learning — area of computer science focused
on systems and algorithms that learn from data (Flach,
2012; Crown, 2015)

* Data mining — processing and modeling of data to
discover previously unknown patterns or relationships
(Bellazzi, 2008; Zaki, 2014)

* Text mining — applying data mining to unstructured
textual data (Aggarwal, 2012)

* Big data — data of growing volume, velocity, variety,
and veracity (Zikopolous, 2011; O’Reilly, 2015)

— e.g., ~9 petabytes of data of Kaiser-Permanente (Gardner,

2013)
OREGON
HEALTH &=

e &SCIENCE

UNIVERSITY




Related terms (cont.)

Data science — distinguished from statistics by
understanding of varying types and how to manipulate
and leverage (Dhar, 2013; Grus, 2015)

Data provenance — origin and trustworthiness
(Buneman, 2010)
* Business intelligence — use of data to obtain timely,
valuable insights into business and clinical data
(Adams, 2011)
Personalized (Hamburg, 2010), precision (IOM, 2011;
Collins, 2015; Ashley, 2015), or computational
medicine (Winslow, 2012)
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Analytics is well-employed outside of
healthcare

* Amazon and Netflix recommend books and movies with great
precision

* Many sports teams, such as the Oakland Athletics and New England
Patriots, have used “moneyball” to select players, plays, strategies,
etc. (Lewis, 2004; Davenport, 2007)

* US 2012 election showed value of using data: re-election of
President Obama (Scherer, 2012) and predictive ability of Nate
Silver (Salant, 2012)

* Individual traits such as sexual orientation, political affiliation,
personality types, and ethnicity can be discerned from Facebook
“likes” with high accuracy (Kosinski, 2013)

* “Internet advertising” is a growing area (Smith, 2014), aiming to
solve “Wanamaker dilemma” (O’Reilly, 2012)

* Government (e.g., National Security Agency in US) tracking of

email, phone calls, and other digital trails (Levy, 2014)
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What about analytics in healthcare?

* With shift of payment from “volume to value,”
healthcare organizations will need to manage
information better to deliver better care (Diamond,
2009; Horner, 2012)

— To realize this, they must achieve “analytic
integration” (Davenport, 2012)

* New care delivery models (e.g., accountable care
organizations) will require better access to data (e.g.,
health information exchange, HIE)

— Halamka (2013): ACO = HIE + analytics

* Recent overviews (Burke, 2013; Gensinger, 2014;
Marconi, 2014)
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Applications of analytics in healthcare

* Early application —identifying patients at risk for
hospital readmission within 30 days of discharge

* Centers for Medicare and Medicaid Services
(CMS) Readmissions Reduction Program
penalizes hospitals for excessive numbers of
readmissions (2013)

* Several studies have used EHR data to predict
patients at risk for readmission (Amarasingham,
2010; Donzé, 2013; Gildersleeve, 2013; Shadmi,
2015)
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Applications of analytics — identifying
other clinical situations

* Predicting 30-day risk of readmission and death among HIV-
infected inpatients (Nijhawan, 2012)

* |dentification of children with asthma (Afzal, 2013)

* Detecting postoperative complications (FitzHenry, 2013)

* Measuring processes of care (Tai-Seale, 2013)

* Determining five-year life expectancy (Mathias, 2013)

* Detecting potential delays in cancer diagnosis (Murphy, 2014)

* Identifying patients with cirrhosis at high risk for readmission
(Singal, 2013)

* Predicting out of intensive care unit cardiopulmonary arrest or
death (Alvarez, 2013)

* Predicting hospital death by day or time of day (Coiera, 2014)

* Predicting future patient costs (Charlson, 2014)
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Applications of analytics — patient
identification and diagnosis

Identifying patients who might be eligible for
participation in clinical studies (Voorhees,
2012)

Determining eligibility for clinical trials
(Kopcke, 2013)

Identifying patients with diabetes and the
earliest date of diagnosis (Makam, 2013)
Predicting diagnosis in new patients (Gottlieb,
2013)
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Most important use cases for data
analytics (Bates, 2014)
High-cost patients — looking for ways to intervene
early
Readmissions — preventing
Triage — appropriate level of care
Decompensation — when patient’s condition
worsens
Adverse events —awareness
Treatment optimization — especially for diseases
affecting multiple organ systems
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Requirements for data analytics in
healthcare

* Infrastructure (Amarasingham, 2014)
— Stakeholder engagement
— Human subjects research protection
— Protection of patient privacy
— Data assurance and quality
— Interoperability of health information systems
— Transparency
— Sustainability
* New models of thinking and training (Krumholz, 2014)

* New tools, e.g., “green button” to help clinicians
aggregate data in local EHR (Longhurst, 2014)
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Challenges for analytical use of clinical
data

* Data quality and accuracy is not a top priority for
busy clinicians (de Lusignan, 2005)

* Patients get care at different places (Bourgeois,
2010; Finnell, 2011)

* Standards and interoperability — mature
approaches but lack of widespread adoption
(Kellermann, 2013)

* Much data is “locked” in text (Hripcsak, 2012)

* Average pediatric ICU patient generates 1348
information items per 24 hours (Manor-Shulman,
2008)
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How can | learn more in Oregon?
Study informatics?

* Many educational opportunities at a variety of
levels, mostly graduate

— http://www.amia.org/informatics-academic-training-
programs
* OHSU program one of largest and well-
established (Hersh, 2007)
— http://www.ohsu.edu/informatics-education

— Graduate level programs at Certificate, Master’s, and
PhD levels

— “Building block” approach allows courses to be carried
forward to higher levels
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Conclusions

* There are plentiful opportunities for data
analytics in healthcare

* We must be cognizant of caveats of using
operational clinical data

* We must implement best practices for using
such data

* There are many career opportunities in
healthcare data analytics
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