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Reducing Workload in Systematic Review Preparation Using
Automated Citation Classification

A. M. COHEN, MD, MS, W. R. HERSH, MD, K. PETERSON, MS, PO-YIN YEN, MS

A b s t r a c t Objective: To determine whether automated classification of document citations can be useful in
reducing the time spent by experts reviewing journal articles for inclusion in updating systematic reviews of drug class
efficacy for treatment of disease.

Design: A test collection was built using the annotated reference files from 15 systematic drug class reviews. A voting
perceptron-based automated citation classification system was constructed to classify each article as containing high-
quality, drug class–specific evidence or not. Cross-validation experiments were performed to evaluate performance.

Measurements: Precision, recall, and F-measure were evaluated at a range of sample weightings. Work saved over
sampling at 95% recall was used as the measure of value to the review process.

Results: A reduction in the number of articles needing manual review was found for 11 of the 15 drug review topics
studied. For three of the topics, the reduction was 50% or greater.

Conclusion: Automated document citation classification could be a useful tool in maintaining systematic reviews of the
efficacy of drug therapy. Further work is needed to refine the classification system and determine the best manner to
integrate the system into the production of systematic reviews.

j J Am Med Inform Assoc. 2006;13:206–219. DOI 10.1197/jamia.M1929.

The practice of evidence-based medicine (EBM) involves
applying the best and most up-to-date evidence, in the form
of published literature, to patient care decision making.1,2

While the original vision of EBM appeared to require physi-
cians directly searching the primary literature for evidence ap-
plicable to their patients, the modern conception of EBM relies
heavily on distillations of the primarily literature in the form of
systematic reviews (also called evidence reports),3,4 such as
those produced by the Cochrane Collaboration and the
Evidence-based Practice Centers (EPCs) of the Agency for
Healthcare Research and Quality (AHRQ).5 AHRQ reports
are available to the public (http://www.ahrq.gov/clinic/
epcindex.htm/) and abstracts of Cochrane reviews are also
available (http://www.cochrane.org/reviews/).

The Department of Medical Informatics and Clinical
Epidemiology at the Oregon Health and Science University

is home to one of the AHRQ EPCs (http://www.ohsu.edu/
epc/). The EPC has focused on providing comprehensive lit-
erature reviews comparing classes of drugs used for treating
specific conditions. To date, the Oregon EPC, Southern
California EPC, and Research Triangle Institute/University
of North Carolina (RTI/UNC) EPC have completed and pub-
lished 15 evidence reports, evaluating the efficacy of medica-
tions in drug classes such as oral opioids, skeletal muscle
relaxants, and estrogen replacement.6–8

Making these evidence reports comprehensive and keeping
them up to date is a labor-intensive process.9,10 Like any
systematic review, those of drug classes identify thousands
of articles that must be located, triaged, reviewed, and
summarized. Potentially relevant articles are located using
an iteratively refined query-based search of biomedical elec-
tronic databases, such as MEDLINE and EMBASE. These
queries are developed by starting with the optimized clinical
queries proposed and studied by Haynes et al.11–13 and refined
based on the experience and knowledge of the EPC staff. For
the 15 systematic drug reviews mentioned above, the staff cre-
ated queries for randomized controlled trials by combining
terms for health conditions and interventions with the
Haynes et al. research methodology filters for therapy.

Articles are then triaged in a two-step process. First the ab-
stract is reviewed, and, if the abstract meets the inclusion cri-
teria, the entire article is read. If the full text article proves to
meet the inclusion criteria, the evidence presented in the arti-
cle is summarized and included in the EPC report. Advances
in clinical evaluation and pharmacology require that EPC
drug reviews be updated on a periodic basis. This inevitably
leads to the workload of the center increasing over time as re-
viewers must both produce new reviews as well as monitor
and update the old ones.
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The process of creating these drug reviews is very methodi-
cal. Reviewers keep detailed records of their search methods,
the articles for which they have reviewed the abstracts and
read full text, and, finally, which articles include sufficient
high-quality evidence to warrant inclusion in the systematic
review. This process motivated our interest in using these
data to train an automated classification system that would
have the ability to predict which new articles were most
likely to include evidence warranting inclusion in a review
update. An automated classification system would function
to triage (or filter) new articles that match the search criteria
of the original study. This would be useful to the reviewers
in several ways. First, by monitoring the number of new ar-
ticles on a given topic containing high-quality evidence (as
determined by the classification system), the reviewers
would have a simple and clear indication when substantial
new information exists on a topic and the report needs to
be revised. Second, the classification system could decrease
the number of articles that require manual review and there-
fore reduce one of the most time-consuming steps in prepar-
ing or updating a systematic review. Third, classifying the
most likely documents to contain high-quality evidence
can help reviewers prioritize which articles are read first
and which are read only if there is sufficient time. This pa-
per presents the investigators’ application of a machine
learning–based classification system to reduce the labor re-
quired and improve the efficiency of keeping drug reviews
up to date.

We are unaware of any prior work that applies automated
classification of literature for topic-specific evidence-based
drug or therapy reviews similar to the work we present
here. The closest research is the work of Aphinyanaphongs
et al.,14 who have published work investigating the use of ma-
chine-learning algorithms to improve information retrieval of
high-quality articles useful for evidence-based medicine in
the nontopic-specific high-level categories of etiology, prog-
nosis, diagnosis, and treatment. Their research focuses on
improving performance over the clinical query filters first
proposed by Haynes et al.,11–13 using all the articles published
in ten journals from 1986 through 1991, and whether those
articles were included in the ACP Journal Club as a gold
standard.

There has been much more work in the related area of auto-
mated document classification to assist curator annotation of
biomedical databases. Like the work of Aphinyanaphongs
et al.,14 the goals of these tasks are to place articles into one
of a few high-level, nontopic-specific categories. The results
of these high-level automated tasks vary because the recall
requirements are different and are difficult to compare to
the topic-specific classification presented here. Dobrokhotov
et al.15 used a combination of NLP and statistical classification
techniques to achieve a recall of 0.4477 at a precision of 0.6716
for identifying articles containing information about human
genetic diseases and polymorphisms, using a test set where
15% of the original articles were relevant. The TREC 2004
Genomics track included a task to identify articles containing
information on mouse gene function for Gene Ontology (GO)
annotation. With a utility function giving recall 20 times the
importance of precision, the best results achieved were a nor-
malized utility of 0.6512, and precision of 0.1579 at a recall of
0.8881, resulting in an F-measure of 0.2681.16

Methods
In order to build and test an automated classification system
for these evidence reports, we proceeded in three phases. In
the first phase, we built test collections for each of 15 review
topics. In the second phase, we trained a machine learning–
based classifier on the test collections. In the final phase,
we evaluated the approach on each of the review topics.
Figure 1 shows a diagram of the overall process.

Building the Text Collections
The initial data set consisted of 15 EndNote (http://www.
endnote.com/) reference files with annotations (in the user-
defined fields) made available to the investigators by the
EPC. Each field in the reference file contained information
on the article’s title, authors, journal, and year of publication,
as well as several user-defined fields. The user-defined fields
included information entered by the EPC reviewers about
whether each article passed the triage evaluation done by
an expert reviewer at the abstract and article level. In addi-
tion, sometimes a free-text reason was coded as to why a
paper was excluded. Therefore, these fields were ‘‘semicoded’’
in that the EPC used a consistent set of strings to encode triage
decisions and may also have appended additional free text
describing a reason for the assigning of a specific code.
Occasional data entry typographical errors were also present.

In order to transform these data into a consistent set of infor-
mation that could be used by a classification system, we pro-
cessed the data in several steps. In the first step, we exported
the data from EndNote using a tab-delimited, one record per
line text format. In the second step, we extracted author, jour-
nal, title, year, and user-defined information and used the
NCBI Batch Citation Matcher (http://www.ncbi.nlm.nih.

F i g u r e 1 . High-level diagram of the overall process.
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gov/entrez/citmatch.cgi) to look up the corresponding
PubMed identifiers (PMID). Then we produced a joined file
that included the author, journal, title, year, user-defined
information, and PMID for each article.

In order to make our work reproducible and comparable with
work by others who apply different approaches to this task,
we needed to have a fixed, static collection of MEDLINE
records. We decided to use the TREC 2004 Genomics Track
document corpus, a general MEDLINE subset that has been
widely used in other experimental systems. The corpus con-
sists of all MEDLINE records (not just genomics records, as
might be inferred from the name) for the years 1994 through
the end of 2003. Using this document corpus allows straight-
forward replicability of our results and allows other research
groups to directly compare their results with our own.16

We needed to limit the test collection to articles for which the
TREC 2004 Genomics Track document corpus had available
MEDLINE records. Not all the articles included in the refer-
ence files were indexed in MEDLINE. For example, some
were in non-English journals not indexed in MEDLINE. We
filtered the test collection by the PMIDs present in the
TREC corpus to ensure that we had a MEDLINE record for
each article in the test collection.

In the next step, we normalized the EndNote user-defined
fields that contained the EPC-coded information for the ab-
stract and article triage decisions for each article. We used a
set of simple regular expressions, customized for each drug re-
view and determined by inspection of the data, to normalize
the reason fields into a set of ten consistently coded values.
The codes and meanings are shown in Table 1. The investi-
gators had extended discussions with the EPC reviewers
to determine the correct regular expressions to map the user-
defined fields into the coded values shown in Table 1 and to
detect and resolve any typographical errors. No articles were
excluded from the test collection due to an inability to process
the user-coded fields. In this study, we sought to distinguish
articles included at the abstract and full text levels from all ex-
cluded ones; however, we chose to preserve the information
provided in the exclusion reason codes for use in future work.

As a final step, we combined the information from all the
studies into a single text file. Each line corresponds to an
individual article triaged by the EPC staff for a specific
drug review, and each field corresponds to the drug review

name, a reference file identifier, the PMID, and the abstract
and full text article triage fields encoded as shown in Table 1.
Example data records are shown in Table 2. Note that even
though the data set will only include citations and not full
text articles, the expert EPC reviewers had access to the full
text articles and made their triage decisions in two stages,
the first based on the abstract and the second based on the
full text article. It is this final triage decision that we would
like to predict using a machine-learning algorithm using
only the information contained within the article citation.

Note that in the process just described, there are two steps
where we exclude articles originally contained in the
EndNote files. We lose articles when the Batch Citation
Matcher cannot find a matching article (i.e., the reference is
not indexed in MEDLINE) and when the article is not present
in the ten-year MEDLINE subset. After processing, we were
able to convert between 30% and 50% of the references into
the test collection.

Descriptive statistics about the number of original articles re-
viewed for each study, the number of articles included in the
text collection, and the percentage of positive articles in each
text collection are shown in Table 3. The first column lists the
drug review name, the second the number of citations

Table 1 j Standardized Coded Values for Abstract and
Article Triage Decisions

Abstract or Article
Code Meaning

I Included at abstract or article level
E Nonspecifically excluded
1 Excluded due to foreign language
2 Excluded due to wrong outcome
3 Excluded due to wrong drug
4 Excluded due to wrong population
5 Excluded due to wrong publication type
6 Excluded due to wrong study design
7 Excluded due to wrong study duration
8 Excluded due to background article
9 Excluded due to only abstract being

available

Table 2 j Example Drug Review Journal Citation
Records

Drug Class Review
EndNote

ID PMID
Abstract
Triage

Article
Triage Year

ADHD 1010 11483145 5 E 2001
Antihistamines 615 1342896 I E 1992
BetaBlockers 211 10826501 I I 2000
CalciumChannelBlockers 3139 11718496 2 E 2001

PMID 5 PubMed identifier; ADHD 5 attention-deficit/hyperactiv-
ity disorder.

Table 3 j Descriptive Statistics on the Number of
Citations for Each Study

Drug Review
Name

No. of
Citations

and
Articles

Reviewed
by EPC

No. of
Citations
Included
in Test

Collection

%
Retained
in Test

Collection

%
Retained
Included
in EPC
Review

ACEInhibitors 6,866 2,544 37.05 1.60
ADHD 2,191 851 38.84 2.40
Antihistamines 1,037 310 29.89 5.20
AtypicalAntipsychotics 2,947 1,120 38.00 13.0
BetaBlockers 5,437 2,072 38.11 2.00
CalciumChannelBlockers 3,717 1,218 32.77 8.20
Estrogens 718 368 51.25 21.7
NSAIDs 766 393 51.31 10.4
Opioids 4,996 1,915 38.33 0.80
OralHypoglycemics 1,460 503 34.45 27.0
ProtonPumpInhibitors 2,698 1,333 49.41 3.80
SkeletalMuscleRelaxants 5,460 1,643 30.09 0.50
Statins 7,922 3,465 43.74 2.50
Triptans 1,343 671 49.96 3.60
UrinaryIncontinence 809 327 40.42 12.2

EPC 5 Evidence-based Practice Center; ACE 5 angiotensin-
converting enzyme; ADHD 5 attention-deficit/hyperactivity disor-
der; NSAIDs 5 nonsteroidal anti-inflammatory drug.
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reviewed by the EPC and therefore the number of entries in
the corresponding EndNote file, the third column gives the
number of citations included in the test collection for each re-
view, the fourth shows the percentage of the original citations
in the EndNote file retained in the text collection, and the final
column gives the percentage of articles retained in the test col-
lection that were included in the final EPC systematic review.

The percentage of articles in the test collection that were se-
lected for inclusion in each of the drug reviews varied widely,
from a low of 0.5% (for SkeletalMuscleRelaxants) to a high of
27% (for OralHypoglycemics). A low percentage of true pos-
itives is often typical for biomedical document classification
tasks and requires a special approach to classification and
evaluation to provide useful results.16–18 Unlike many typical
automated document classification tasks where accuracy
(percentage of correct predictions) or F-measure (defined
later) may provide a useful metric for evaluating systems,
in biomedical scenarios such as we have here, the goal is often
to improve precision, but only if a very high level of recall can
be sustained. For systematic reviews, the reviewers try to in-
clude every article relevant to the topic that provides high-
quality evidence. While it is reasonable to assume that a small
percentage of articles are missed, any automated classifica-
tion system must maintain a high recall, or the work saved
by improving the precision of the set of documents that re-
quire manual review is made irrelevant by the large number
of relevant articles missed.

Classifier System
We used the MEDLINE records for each of the articles to gen-
erate the feature set as input to the machine learning system.
Features included all the words from the title and abstract in a
‘‘bag-of-words’’ approach as well as the article’s Medical
Subject Headings (MeSH) and MEDLINE publication type.
For MeSH-based features, we included the main headings,
the headings with subheadings, the primary heading, and
the subheadings by themselves. The MeSH and MEDLINE
publication type features were pre-pended with ‘‘MESH_’’
and ‘‘PUBTYPE_’’ respectively to ensure that these features
were treated distinct from words in the title or abstract. We
counted the frequency of each feature appearing in positive
and negative documents and applied the x2 test with an a

of 0.05 to use the statistically significant features as relevant
features for input to the classifier system, using the 2 3 2 table
shown in Table 4. Our previous work on document classifica-
tion has shown this value of a to produce good results.17 Each
feature was treated as a binary quantity, either present in each
document or absent, resulting in a feature vector for each doc-
ument consisting of entirely ones and zeros.

We did not weight the features by term frequencies.
Preliminary testing found that weighting features by intra-
document frequency and/or inverse document frequency
(TF, IDF, TFIDF) decreased the performance of the classifier
system. We also tried applying the Porter stemming algo-
rithm19 as well as a stop list of the 300 most common
English words20 to the word features. Table 5 shows the num-
ber and type of significant features for each drug class review.
The first column gives the drug review name, and the second
column gives the number of statistically significant features
found in the training data for that review. The last three
columns break the total number of features down into three
distinct categories: number of word-based features, number
of MeSH tag-based features, and number of MEDLINE
publication type tag-based features.

Successfully training a classifier to identify low-probability
classes such as the articles included in these drug reviews
can be challenging when using machine-learning algorithms
without sufficient configuration options. We have previously
had success in classifying document collections with highly
asymmetric positive and negative sample frequency (e.g., a
small number of positives in a collection with a large number
of negatives) using a variation of the voting perceptron clas-
sifier first proposed by Freund and Schapire.17,21 The voting
perceptron algorithm has very good performance, is quite
fast, and is easy to implement. While the algorithm as pub-
lished does not include a means of compensating for asym-
metric false positive and negative penalties we have created
a modification to the algorithm that does provide this flexibil-
ity. This allows the system to work well in situations where
the cost of a recall error (false negative) differs significantly
from the cost of a precision error (false positive).

A perceptron is essentially an equation for a linear combina-
tion of the values of the feature set, represented as a vector.
There is one term in the perceptron vector for each feature
in the feature set plus an optional bias term. A document is
classified by taking the dot product of a document’s feature
vector with the perceptron vector and adding in the bias

Table 4 j Arrangement of 2 3 2 Table for Computing
Feature Significance

Training document
is triage positive?

Feature is the one under test?

Yes No

Yes Number of times
feature seen
in positive
documents

Number of times other
features seen
in positive
documents

No Number of times
feature seen
in negative
documents

Number of times other
features seen
in negative
documents

Table 5 j Number of Significant Features for Each
Study

Drug Review Name

Total No. of
Significant
Features

Word
Features

MeSH
Features

PubType
Features

ACEInhibitors 210 165 40 5
ADHD 80 56 24 0
Antihistamines 29 19 9 1
AtypicalAntipsychotics 381 302 71 8
BetaBlockers 194 147 42 5
CalciumChannelBlockers 329 247 77 5
Estrogens 233 184 44 5
NSAIDs 242 186 51 5
Opioids 55 41 14 0
OralHypoglycemics 234 175 55 4
ProtonPumpInhibitors 206 146 54 6
SkeletalMuscleRelaxants 11 7 2 2
Statins 467 374 87 6
Triptans 121 96 22 3
UrinaryIncontinence 215 165 45 5

MeSH 5 medical subject headings; ACE 5 angiotensin-converting en-
zyme; ADHD 5 attention-deficit/hyperactivity disorder; NSAIDs 5

nonsteroidal anti-inflammatory drugs.
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term. If the result is greater than zero, then the document is
classified as positive; if it less than or equal to zero, then the
document is classified as negative.

Rosenblatt’s22 original algorithm trained the perceptron by
applying it to each sample in the training data. If the sample
was incorrectly classified, the perceptron was modified by
adding or subtracting the sample back into the perceptron,
adding when the sample was a true positive and subtracting
when the sample was a true negative. Over a large number of
training samples, the perceptron converges on the solution
that best approximates the separation between positive and
negative documents in the training set.

Freund and Schapire improved the performance of the per-
ceptron by modifying the algorithm to produce a series of
perceptrons, each of which makes a prediction on the class
of each document and gets a number of ‘‘votes’’ depending
on how many documents that perceptron classified correctly
in the training set. The class with the most votes is the pre-
dicted class assigned to the document. They also extended
the perceptron algorithm to enable the use of kernels using
more complex mathematical operations rather than the
straightforward linear kernel that simply adds and subtracts
samples as described above.

In our modified voting perceptron, we use a linear kernel and
differentially adjust the learning rate of the perceptron for
false negatives and false positives. While in the original im-
plementation of Freund and Schapire, incorrectly classified
samples are directly added or subtracted back into the per-
ceptron, we first multiply the sample by a factor known as
the learning rate. Furthermore, we use different learning rates
for false positives and false negatives.

We fixed the false-positive learning rate at 1.0 and adjusted the
false-negative learning rate (FNLR) to optimize performance.
The frequency of positives differs widely across the 15 studies.
In general, we have found that the FNLR should be propor-
tional to the ratio of negative to positive samples in the data
set. In order to process and analyze all the studies in a consis-
tent manner, we created a normalized FNLR parameter, w. The
parameter w is input to the learning algorithm and the actual
FNLR used in training the classifier for each study is given by:

FNLR 5 w*

Number of Positive Documents in the Study Training Set

Number of Negative Documents in the Study Training Set

ð1Þ

In our experiments, we vary w in a consistent manner across
all reviews and compute FNLR for each topic. In general, the
optimal value of w will be different for each classification
task. As we will show, w can be determined by applying
cross-validation to the training data and interpolating to
solve for the value of w that results in the best value for the
chosen scoring measure for each task.

We also tried a rule-based classifier, Slipper,23 with the same
feature sets and document weights but found that it consis-
tently underperformed the voting perceptron classifier. We
did not explore the use of the currently very popular support
vector machine (SVM)-based classifiers such as SVM-Light.24

The voting perceptron classifier divides the parameter space
in a similar way to SVM and has been shown to perform

similarly to SVM-based classifiers.21 Also, our prior experi-
ence with SVM-Light has found that the program settings
are insufficient to handle classification tasks with very low
rates of positive samples when high recall is required.17

Evaluating the Classifier
We wanted to evaluate how our classifier approach performs
on identifying new articles for inclusion in future updates of
the drug evidence reviews. In order to do that, we needed to
decide on an appropriate metric as well as optimize the nor-
malized FNLR weight w for each drug review. To make the
most efficient use of the data sets and to get the best estimate
of system performance on future data, we chose to use 5 3 2
cross-validation.

In 5 3 2 cross-validation, the data set is randomly split in half,
and then one half is used to train the classifier, and the classi-
fier is scored using the other half as a test set. Then the roles of
the two half data sets are exchanged, with the second half used
for training and the first half used for testing, with the results
accumulated from both halves of the split. What makes 5 3 2
different from the ten-way cross-validation more commonly
used is that the half-and-half split and score process is re-
peated five times. This approach uses each data sample five
times for training and five times for testing among random
splits and averages the results together for all runs. The
5 3 2 cross-validation approach is thought to give better esti-
mates of actual performance than the ten-way cross-valida-
tion method, which frequently overestimates performance.25

It was challenging to determine an appropriate metric with
which to evaluate our approach. The most commonly used
measures, precision and recall, separately measure two things
of importance to a classifier system, namely, how accurately
the classifier performs when predicting items in the class of
interest (precision) and how completely the classifier iden-
tifies the items of interest (recall). For classification tasks, pre-
cision (P) and recall (R) are defined as:

P 5
Number Positive Documents Correctly Classified

Total Number of Documents Classified as Positive
ð2Þ

R 5
Number Positive Documents Correctly Classified

Total Number of Positive Documents in Test Collection
ð3Þ

Since precision and recall are two separate numbers, compar-
ing one system or the result of one set of parameters to another
is difficult. Precision and recall are commonly combined into a
weighted harmonic mean called F-measure, usually weighting
both components equally and defined as 2*P*R/(P 1 R).

However, neither precision, recall, nor F-measure captures
what we were interested in measuring for this task. For a doc-
ument classification system to provide value for systematic
reviews, the system has to save the reviewers the work of
reading every paper. At the same time, the number of missed
papers containing quality evidence has to be very low. For
this study, we assumed that a recall of 0.95 or greater was
required for the system to identify an adequate fraction of
the positive papers. Precision should be as high as possible,
as long as recall is at least 0.95.

Furthermore, the most important feature of the system to mea-
sure is how much future work the reviewers could save for
each drug review. Rather than simply reporting the highest
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Table 6 j Results of 5 3 2 Cross-validation on Data Set for Each Drug Review

Drug Review WSS@95% w FNLR P R F WSS

ACEInhibitors 56.61% 0.25 15.2620 0.1211 0.6293 0.2031 54.55%
0.5 30.5240 0.0949 0.8098 0.1699 67.23%
0.75 45.7870 0.0761 0.8732 0.1400 68.82%
1 61.0490 0.0642 0.8780 0.1197 65.77%

*2 122.0980 0.0387 0.9561 0.0745 55.84%
4 244.1950 0.0238 0.9854 0.0465 31.81%
8 488.3900 0.0183 1.0000 0.0359 11.75%

ADHD 67.95% 0.25 10.3870 0.1379 0.6300 0.2262 52.26%
0.5 20.7750 0.0998 0.8500 0.1786 64.98%

*0.75 31.1630 0.0945 0.9200 0.1713 69.11%
1 41.5500 0.0738 0.9800 0.1373 66.79%
2 83.1000 0.0436 1.0000 0.0835 46.09%
4 166.2000 0.0292 1.0000 0.0568 19.53%
8 332.4000 0.0249 1.0000 0.0486 5.57%

Antihistamines 0.00% 0.25 4.5940 0.0894 0.1375 0.1084 5.81%
0.5 9.1880 0.0798 0.2125 0.1160 7.51%
0.75 13.7810 0.0737 0.3125 0.1193 9.38%
1 18.3750 0.0714 0.3625 0.1193 10.06%
2 36.7500 0.0600 0.5125 0.1075 7.19%
4 73.5000 0.0502 0.8500 0.0948 22.35%
8 147.0000 0.0488 0.8500 0.0923 24.87%

AtypicalAntipsychotics 14.11% 0.25 1.6680 0.3890 0.2712 0.3196 18.03%
0.5 3.3360 0.3239 0.5014 0.3935 29.96%
0.75 5.0030 0.2701 0.6027 0.3730 31.18%
1 6.6710 0.2527 0.7014 0.3716 33.96%
2 13.3420 0.1968 0.8479 0.3194 28.62%

*4 26.6850 0.1534 0.9493 0.2642 14.27%
8 53.3700 0.1362 0.9932 0.2396 4.28%

BetaBlockers 28.44% 0.25 12.0830 0.1253 0.4905 0.1996 41.11%
0.5 24.1670 0.0799 0.6429 0.1422 47.98%
0.75 36.2500 0.0621 0.7381 0.1146 49.72%
1 48.3330 0.0503 0.8190 0.0948 48.91%

*2 96.6670 0.0334 0.9286 0.0644 36.47%
4 193.3330 0.0257 0.9714 0.0500 20.42%
8 386.6670 0.0226 0.9952 0.0443 10.39%

CalciumChannelBlockers 12.21% 0.25 2.7950 0.2756 0.3440 0.3060 24.15%
0.5 5.5900 0.2259 0.5620 0.3222 35.77%
0.75 8.3850 0.1968 0.6460 0.3017 37.65%
1 11.1800 0.1694 0.6760 0.2709 34.84%
2 22.3600 0.1248 0.8840 0.2188 30.26%

*4 44.7200 0.0952 0.9460 0.1730 13.02%
8 89.4400 0.0845 0.9960 0.1558 2.83%

Estrogens 18.34% 0.25 0.9000 0.4953 0.2625 0.3431 14.73%
0.5 1.8000 0.4648 0.5275 0.4941 28.08%
0.75 2.7000 0.4288 0.6775 0.5252 33.40%
1 3.6000 0.3968 0.7500 0.5190 33.91%
2 7.2000 0.3213 0.8900 0.4721 28.78%

*4 14.4000 0.2552 0.9725 0.4044 14.42%
8 28.8000 0.2263 0.9975 0.3689 3.93%

NSAIDs 49.67% 0.25 2.1460 0.3720 0.3756 0.3738 27.03%
0.5 4.2930 0.3453 0.7024 0.4630 49.02%
0.75 6.4390 0.2831 0.8146 0.4201 51.44%

*1 8.5850 0.2631 0.9317 0.4103 56.22%
2 17.1710 0.1620 0.9902 0.2785 35.26%
4 34.3410 0.1161 1.0000 0.2081 10.18%
8 68.6830 0.1080 1.0000 0.1950 3.41%

Opioids 13.32% 0.25 31.6670 0.0347 0.2533 0.0610 19.61%
0.5 63.3330 0.0187 0.4667 0.0359 27.09%
0.75 95.0000 0.0128 0.4533 0.0249 17.57%
1 126.6670 0.0109 0.6933 0.0214 19.44%

*2 253.3330 0.0092 0.9467 0.0182 14.19%
4 506.6670 0.0082 0.9867 0.0162 3.85%
8 1013.3338 0.0078 1.0000 0.0156 0.05%

OralHypoglycemics 8.96% 0.25 0.6750 0.5437 0.2471 0.3397 12.42%
0.5 1.3490 0.4840 0.4882 0.4861 21.55%
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precision obtained at a recall at or above 0.95, we chose to use
as our metric a measure of the work saved at a recall fixed at
0.95. We define the work saved as the percentage of papers
that meet the original search criteria that the reviewers do
not have to read (because they have been screened out by
the classifier). A recall of 0.95 can be obtained with a 0.95 ran-
dom sampling of the data, and this process would save the re-
viewers 5% of the work of reading the papers. Clearly, for the
classifier system to provide an advantage, the work saved
must be greater than the work saved by simple random sam-
pling. Therefore, we measure the work saved over and above
the work saved by simple sampling for a given level of recall.
We define the work saved over sampling (WSS) as:

WSS 5 ðTN 1 FNÞ=N 2 ð1:0 2 RÞ
5 ðTN 1 FNÞ=N 2 1 1 TP=ðTP 1 FNÞ

ð4Þ

where TP is the number of true positives identified by the
classifier, TN is the number of true negatives identified by

the classifier, FN is the number of false negatives identified
by the classifier, R is recall and N is the total number of sam-
ples in the test set. For the present work, we have fixed recall
at 0.95 and therefore work saved over sampling at 95% recall
(WSS@95%) is

WSS@95% 5 ðTN 1 FNÞ=N 2 0:05 ð5Þ

This measure does make some simplifying assumptions. No
specific consideration is given to variations in document
length or the work expended during review of an article
citation versus the review of a full text article. We assume
the actual work saved by documents predicted to be negative
by the classification system is on average the same as the
work required by the average document retrieved during
the literature search.

We applied the 5 3 2 cross-validation process to the data sets
for each of the drug reviews multiple times, varying w

Table 6 j (Continued)

Drug Review WSS@95% w FNLR P R F WSS

0.75 2.0240 0.4284 0.5941 0.4978 21.92%
1 2.6990 0.3962 0.6735 0.4989 21.39%
2 5.3970 0.3375 0.8382 0.4812 16.67%

*4 10.7940 0.3004 0.9471 0.4561 9.46%
8 21.5880 0.2797 0.9838 0.4355 3.27%

ProtonPumpInhibitors 27.68% 0.25 6.2840 0.2335 0.4706 0.3121 39.35%
0.5 12.5690 0.1522 0.6588 0.2472 49.32%
0.75 18.8530 0.1162 0.7059 0.1996 47.35%
1 25.1370 0.0879 0.7882 0.1582 44.52%

*2 50.2750 0.0602 0.9373 0.1132 34.18%
4 100.5490 0.0471 0.9686 0.0898 18.18%
8 201.0980 0.0412 0.9961 0.0792 7.17%

SkeletalMuscleRelaxants 0.00% 0.25 45.3890 0.0042 0.0222 0.0070 20.70%
0.5 90.7780 0.0038 0.0222 0.0064 21.02%
0.75 136.1670 0.0044 0.3556 0.0088 28.34%
1 181.5560 0.0050 0.4000 0.0099 23.90%
2 363.1110 0.0051 0.8444 0.0102 25.56%
4 726.2220 0.0055 1.0000 0.0109 0.00%
8 1452.4440 0.0055 1.0000 0.0109 0.00%

Statins 24.71% 0.25 9.9410 0.1707 0.5106 0.2559 43.72%
0.5 19.8820 0.1154 0.6612 0.1965 52.06%
0.75 29.8240 0.0883 0.7600 0.1583 54.89%
1 39.7650 0.0702 0.8071 0.1291 52.49%
2 79.5290 0.0469 0.8894 0.0891 42.44%

*4 159.0590 0.0311 0.9647 0.0603 20.41%
8 318.1180 0.0263 0.9906 0.0512 6.55%

Triptans 3.37% 0.25 6.7400 0.1389 0.2500 0.1786 18.56%
0.5 13.4790 0.0883 0.5583 0.1524 33.21%
0.75 20.2190 0.0711 0.6917 0.1290 34.38%
1 29.9580 0.0639 0.7583 0.1178 33.36%
2 53.9170 0.0449 0.8667 0.0854 17.64%

*4 107.8330 0.0365 0.9583 0.0703 1.94%
8 215.6670 0.0359 1.0000 0.0693 0.39%

UrinaryIncontinence 26.14% 0.25 1.7940 0.4509 0.5050 0.4764 36.80%
0.5 3.5870 0.3434 0.7400 0.4691 47.64%
0.75 5.3810 0.2824 0.7400 0.4088 41.95%
1 7.1750 0.2523 0.8400 0.3880 43.27%
2 14.3500 0.1880 0.9100 0.3116 31.80%

*4 28.7000 0.1559 0.9850 0.2691 21.19%
8 57.4000 0.1325 1.0000 0.2341 7.71%

WSS 5 work saved over sampling; w 5 normalized FNLR parameter; FNLR 5 false-negative learning rate; P 5 precision; R 5 recall; F 5 F1-measure;
ACE 5 angiotensin-converting enzyme; ADHD 5 attention-deficit/hyperactivity disorder; NSAIDs 5 nonsteroidal anti-inflammatory drugs;
* 5 recall closest to 0.95.
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between 0.25 and 8.00. This range of w used covered the useful
range of FNLR for each of the review topics. At lower values of
w (,0.25), the recall was well below the 0.95 that we were tar-
geting. For higher values of w (.8.00), recall was at or near
100%. Finally, we estimated WSS@95% by linearly interpolat-
ing the WSS for the values of w with recall immediately above
and below 0.95. This allowed us to both determine the best
value of w for training the classifier for a specific systematic re-
view and to estimate the performance of the classifier on future
articles that meet the search criteria of the original drug review.

Results
The results of our cross-validation experiments are presented
in Table 6. Precision, recall, F-measure, FNLR, and WSS for
each drug review at eight different values of the parameter
w, from 0.25 to 8.00 are shown. For each drug review, the
value of w that leads to a recall closest to 0.95 is marked
with an asterisk. This value varies between a low of 0.75
and a high of 4.00. For some topics, estimating WSS@95% re-
call required evaluating WSS at 8.0 to bracket the 95% recall
value. Evaluating performance at values of w below 0.75
appears not to be necessary to determine the best value of
w to optimize WSS@95%.

Figure 2 presents the relationship between w and recall for
each of the 15 drug reviews. While recall monotonically in-
creases very smoothly with w for all 15 reviews, the value
of w for which recall reaches 0.95 varies widely. Furthermore,
the curves flatten out substantially as w was raised above 2.0,
making 4.0 a practical upper limit for w.

Figure 3 presents estimates of the potential work saved for
each of the 15 reviews. For 13 of the 15 topics, the

WSS@95% was positive, meaning that the automated classifi-
cation process is predicted to save the reviewers work in the
future. For three of these topics, ACEInhibitors, ADHD, and
NSAIDs, the predicted work savings was very large, about
$50%. For these tasks the classification system is clearly suc-
cessful at producing a significant work savings.

The work savings for the 15 tasks varied between 0% for
Antihistamines and SkeletalMuscleRelaxants and 67.95% for
ADHD. To fully evaluate our method, it was necessary to
set a WSS@95% threshold for success. We determined a suc-
cess threshold in the following manner. EPC staff estimates
that performing a thorough literature database search, review
of abstracts, full text procurement of identified documents,
and review of those documents takes on average about 332
hours of a total 3,648-hour timeline to produce a systematic
review or to update a review. WSS@95% measures the work
saved over sampling at 95% recall, that is, the work saved
over and above if one just took a 95% sample of the docu-
ments. When computing the actual time saved, this addi-
tional 5% (1.0 2 0.95 5 0.05) has to be added back in to
arrive at an estimate of the total time saved by using the
system, as opposed to just the benefit over sampling.

At a WSS@95% of 10.0%, actually 15% of the 332 hours spent
on the tasks listed above is saved. This comes to about 50
hours of decreased work or about one week less time spent
on each report. The EPC staff thought that saving more
than a week’s worth of labor was significant and that the
saved time could be put to good use in writing a better
review, spending more time synthesizing the evidence, or
conducting further analyses. Therefore, a WSS@95% of 10%
is a reasonable threshold for distinguishing the review topics

F i g u r e 2 . Recall versus w for each of the 15 drug review topics.

213Journal of the American Medical Informatics Association Volume 13 Number 2 Mar / Apr 2006



where our methods provide a significant savings from those
topics that do not derive a significant savings.

For 11 of the 15 review topics, the predicted WSS@95% sav-
ings was above 10%, and for seven of the 15 topics, the pre-
dicted savings was greater than 20%. For only four of the
topics was the predicted savings less than 10%. The overall
average WSS@95% for the 15 topics was 23.43%.

For two topics, Antihistamines and SkeletalMuscleRelaxants,
the classification process did not provide any savings. For the
Antihistamine review, a recall of 95% was unable to be
achieved, and increasing w from 4.00 to 8.00 did not increase
the recall at all. For the SkeletalMuscleRelaxants review, a re-
call of 95% was achievable, but the proportion of positives in
the set chosen by the classifier was lower than in the original
sample. For the Triptans review, the savings was positive
(3.37%) , but smaller than our required threshold.

The last column in Table 3, the percentage retained included
in EPC review, can be interpreted as the precision of the
queries used in the literature search, as applied to the articles
in our text collection. These numbers can be compared to the
precision shown in Table 6. Table 7 presents these results also
showing in the last column the factor by which the classifica-
tion process multiplies precision at approximately 95% recall,
as compared to the original expert-created clinical query. The
precision and recall figures are chosen for the recall from
Table 6 that are closest to 0.95. The precision improvement
factor varies widely, from a very modest 1.0139 for Triptans
to a very large 3.9375 for ADHD. Since the classification
process was unable to achieve any improvement for
Antihistamines and SkeletalMuscleRelaxants, results for

these two reviews are labeled ‘‘NA’’ (not applicable) in the
table. The last row of Table 7 provides an overall average for
the 13 topics for which the classifier system was successful.

To ensure that our results were not confounded by the sizes
or other descriptive statistics of the samples, we explored
possible connections to classifier performance by computing
linear correlation between WSS@95% and sample size,
percentage of positive samples, and the number of relevant

F i g u r e 3 . Work saved over sampling at 95% recall for each of the 15 drug review topics.

Table 7 j Comparison of Precision with
Original Query

Drug Review Name
Query

Precision
Classifier
Precision

Classifier
Recall

Precision
Improvement

ACEInhibitors 0.0160 0.0387 0.9561 2.4188
ADHD 0.0240 0.0945 0.9200 3.9375
Antihistamines 0.0520 NA NA NA
AtypicalAntipsychotics 0.1300 0.1534 0.9493 1.1800
BetaBlockers 0.0200 0.0334 0.9286 1.6700
CalciumChannelBlockers 0.0820 0.0952 0.9460 1.1610
Estrogens 0.2170 0.2552 0.9725 1.1760
NSAIDs 0.1040 0.2631 0.9317 2.5298
Opioids 0.0080 0.0092 0.9467 1.1500
OralHypoglycemics 0.2700 0.3004 0.9471 1.1126
ProtonPumpInhibitors 0.0380 0.0602 0.9373 1.5842
SkeletalMuscleRelaxants 0.0050 NA NA NA
Statins 0.0250 0.0311 0.9647 1.2440
Triptans 0.0360 0.0365 0.9583 1.0139
UrinaryIncontinence 0.1220 0.1559 0.9850 1.2779
Mean for not NA 0.0840 0.1174 0.9495 1.6504

NA 5 Not applicable.
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Table 8 j Results of 5 3 2 Cross-validation with Stemming and Stop List on Data Set for Each Review

Drug Review WSS@95% w FNLR P R F WSS

ACEInhibitors 60.95% 0.25 15.2620 0.128 0.737 0.218 64.38%
0.5 30.5240 0.092 0.854 0.167 70.49%
0.75 45.7870 0.075 0.898 0.139 70.50%
1 61.0490 0.058 0.907 0.109 65.49%
2 122.0980 0.042 0.966 0.080 59.26%
4 244.1950 0.026 0.966 0.051 37.36%
8 488.3900 0.020 0.985 0.039 19.27%

ADHD 67.60% 0.25 10.3870 0.130 0.680 0.218 55.69%
0.5 20.7750 0.104 0.800 0.184 61.93%
0.75 31.1630 0.091 0.890 0.165 65.97%
1 41.5500 0.078 0.980 0.144 68.41%
2 83.1000 0.049 0.990 0.093 51.36%
4 166.2000 0.031 1.000 0.059 22.96%
8 332.4000 0.025 1.000 0.049 6.93%

Antihistamines 0.00% 0.25 4.5940 0.097 0.175 0.125 8.21%
0.5 9.1880 0.083 0.275 0.128 10.40%
0.75 13.7810 0.061 0.275 0.100 4.27%
1 18.3750 0.073 0.413 0.124 11.96%
2 36.7500 0.054 0.488 0.098 2.30%
4 73.5000 0.050 0.850 0.094 23.52%
8 147.0000 0.049 0.850 0.092 25.00%

AtypicalAntipsychotics 15.09% 0.25 1.6680 0.370 0.297 0.330 19.26%
0.5 3.3360 0.298 0.521 0.379 29.30%
0.75 5.0030 0.263 0.663 0.377 33.46%
1 6.6710 0.238 0.725 0.359 32.84%
2 13.3420 0.186 0.881 0.307 26.33%
4 26.6850 0.155 0.951 0.266 14.98%
8 53.3700 0.138 0.989 0.242 5.33%

BetaBlockers 34.14% 0.25 12.0830 0.123 0.514 0.199 42.95%
0.5 24.1670 0.076 0.695 0.137 50.90%
0.75 36.2500 0.054 0.805 0.102 50.50%
1 48.3330 0.055 0.824 0.103 52.01%
2 96.6670 0.032 0.948 0.062 35.24%
4 193.3330 0.026 0.976 0.051 22.03%
8 386.6670 0.023 0.995 0.044 10.68%

CalciumChannelBlockers 23.83% 0.25 2.7950 0.236 0.312 0.269 20.35%
0.5 5.5900 0.216 0.484 0.298 29.98%
0.75 8.3850 0.187 0.664 0.292 37.25%
1 11.1800 0.164 0.754 0.269 37.60%
2 22.3600 0.125 0.930 0.221 32.08%
4 44.7200 0.096 0.974 0.174 13.94%
8 89.4400 0.085 1.000 0.157 3.40%

Estrogens 14.03% 0.25 0.9000 0.506 0.303 0.379 17.26%
0.5 1.8000 0.468 0.560 0.510 29.97%
0.75 2.7000 0.418 0.670 0.515 32.16%
1 3.6000 0.398 0.780 0.527 35.39%
2 7.2000 0.319 0.890 0.469 28.29%
4 14.4000 0.251 0.955 0.398 12.84%
8 28.8000 0.226 0.990 0.369 3.95%

NSAIDs 29.29% 0.25 2.1460 0.353 0.371 0.362 26.13%
0.5 4.2930 0.301 0.629 0.407 41.09%
0.75 6.4390 0.259 0.815 0.393 48.69%
1 8.5850 0.203 0.912 0.333 44.45%
2 17.1710 0.155 0.946 0.266 30.77%
4 34.3410 0.115 1.000 0.206 9.06%
8 68.6830 0.108 1.000 0.195 3.21%

Opioids 16.23% 0.25 31.6670 0.029 0.267 0.053 19.51%
0.5 63.3330 0.018 0.360 0.035 20.66%
0.75 95.0000 0.016 0.507 0.031 25.71%
1 126.6670 0.011 0.760 0.022 22.54%
2 253.3330 0.009 0.973 0.018 15.45%
4 506.6670 0.008 1.000 0.016 4.76%
8 1013.3338 0.008 1.000 0.016 0.01%
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features. These calculations showed a very low level of non-
statistically significant correlation between WSS@95% and
sample size (R2 5 0.025, p 5 0.576), between WSS@95%
and percentage of positive samples (R2 5 0.036, p 5 0.498),
and between WSS@95% and the number of features (R2 5

0.013, p 5 0.689).

Results obtained applying the 300-word stop list and the
Porter stemming in addition to the previously described clas-
sification algorithm are shown in Table 8. Overall stemming
and stopping increased the range of best to worst scores,
but the average effect was small. The results for NSAIDs de-
creased markedly, but the score for CalciumChannelBlockers
almost doubled. Since stemming and stopping did not pro-
vide any clear and consistent benefit and added to the overall
computational complexity, we decided to base our results and
analysis on the baseline classification system without stem-
ming or stopping.

Discussion
For more than 70% (11/15) of the drug reviews, the auto-
mated classification process showed a significant savings of
reviewer effort at the 95% recall level. At this high level of re-
call, for 20% (3/15) of the reviews this savings was very large,
about $50%. Clearly, a savings of $50% of the effort needed
to review journal articles is substantial and attractive.

Our research demonstrates a means of training an automated
document classification system to select the papers with the
highest likelihood of containing high-quality evidence. We
have shown that automated document classification has
strong potential for aiding the labor-intensive literature re-
view process for systematic treatment reviews and other sim-
ilar studies. Of course, the work savings could be greater if a
lower level of recall were found acceptable.

Furthermore, our research demonstrates how to determine
which review topics the automated classifier will provide

Table 8 j (Continued)

Drug Review WSS@95% w FNLR P R F WSS

OralHypoglycemics 6.96% 0.25 0.6750 0.502 0.240 0.324 11.05%
0.5 1.3490 0.446 0.457 0.451 17.98%
0.75 2.0240 0.419 0.578 0.486 20.50%
1 2.6990 0.394 0.646 0.489 20.26%
2 5.3970 0.340 0.846 0.485 17.28%
4 10.7940 0.298 0.934 0.452 8.65%
8 21.5880 0.280 0.984 0.436 3.43%

ProtonPumpInhibitors 28.47% 0.25 6.2840 0.217 0.463 0.295 38.10%
0.5 12.5690 0.135 0.643 0.223 46.04%
0.75 18.8530 0.110 0.722 0.190 46.98%
1 25.1370 0.085 0.792 0.153 43.36%
2 50.2750 0.059 0.941 0.112 33.53%
4 100.5490 0.047 0.969 0.089 17.78%
8 201.0980 0.041 0.996 0.078 5.74%

SkeletalMuscleRelaxants 0.00% 0.25 45.3890 0.006 0.022 0.010 0.25%
0.5 90.7780 0.006 0.044 0.010 0.31%
0.75 136.1670 0.005 0.378 0.009 26.67%
1 181.5560 0.005 0.422 0.010 22.71%
2 363.1110 0.005 0.844 0.010 25.56%
4 726.2220 0.005 1.000 0.011 0.00%
8 1452.4440 0.005 1.000 0.011 0.00%

Statins 27.41% 0.25 9.9410 0.137 0.494 0.214 40.56%
0.5 19.8820 0.088 0.654 0.156 47.28%
0.75 29.8240 0.072 0.762 0.131 50.16%
1 39.7650 0.062 0.805 0.115 48.63%
2 79.5290 0.040 0.911 0.077 35.83%
4 159.0590 0.031 0.984 0.060 20.25%
8 318.1180 0.028 0.988 0.055 12.33%

Triptans 2.38% 0.25 6.7400 0.132 0.325 0.188 23.71%
0.5 13.4790 0.077 0.500 0.134 26.81%
0.75 20.2190 0.069 0.775 0.127 37.38%
1 29.9580 0.060 0.742 0.111 29.90%
2 53.9170 0.045 0.883 0.086 18.44%
4 107.8330 0.037 0.933 0.071 2.87%
8 215.6670 0.036 1.000 0.070 0.89%

UrinaryIncontinence 25.74% 0.25 1.7940 0.375 0.495 0.427 33.35%
0.5 3.5870 0.305 0.715 0.428 42.81%
0.75 5.3810 0.255 0.810 0.388 42.16%
1 7.1750 0.224 0.870 0.357 39.54%
2 14.3500 0.184 0.930 0.307 31.17%
4 28.7000 0.152 0.975 0.263 18.97%
8 57.4000 0.130 0.995 0.230 5.98%

WSS 5 work saved over sampling; w 5 normalized FNLR parameter; FNLR 5 false-negative learning rate; P 5 precision; R 5 recall; F 5 F1- measure;
ACE 5 angiotensin-converting enzyme; ADHD 5 attention-deficit/hyperactivity disorder; NSAIDs 5 nonsteroidal anti-inflammatory drugs.
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benefit for and an estimate of the expected labor reduction.
The 5 3 2 cross-validation method should provide an accu-
rate estimate of the classification performance on future arti-
cles that meet the given search criteria. This allows us to apply
the automated classification system to only the review topics
that gain sufficient value in the review process. While further
work is necessary to determine the requirements of system-
atic reviewers before adding document classification to the
drug review work process, we have shown a robust means
of estimating the benefit that an automated document classi-
fication approach could provide.

We found that the performance of the classifier system, while
most often providing at least some benefit, varied widely. In
general, it is difficult to determine why a machine-learning
algorithm such as the voting perceptron performs well on
one task and not on another. Unlike with rules-based classi-
fiers (e.g., Cohen et al.23), the decision processes of a margin-
based learning algorithm such as ours are rather opaque.
Nevertheless, some observations can be made from the data
in Tables 5 and 6 about why the classification system per-
formed very well on some review topics and poorly on others.

Statistical analysis showed essentially no correlation between
performance and the sample size or fraction of positive sam-
ples. The two zero scoring topics, Antihistamines and
SkeletalMuscleRelaxants, had the lowest number of signifi-
cant features, meaning that the classifier system had fewer di-
mensions with which to separate positives from negatives. It
appears that 30 or fewer significant features are not enough to
adequately model the triage process. However, the highest
scoring topics did not necessarily have the highest number
of significant features and the correlation between number
of significant features and WSS was not statistically signifi-
cant. The best performance occurred on ACEInhibitors,
ADHD, and NSAIDs topics, but these topics had signifi-
cant feature counts in the middle of the range. The tasks
with the highest number of significant feature counts,
AtypicalAntipsychotics and Statins, scored at the low and
high extremes of the moderate performing group of tasks.
We examined the data for correlations between performance
and descriptive measures about the set of significant features
such as number of individual features above various recall
and precision thresholds and were unable to find any
correlation.

Our previous work in biomedical text mining has shown that
examining the single most predictive feature can provide
insight into the performance of text classification tasks and
at times can even dominate the performance,16 especially
when human annotated features such as MeSH are available.
We therefore conducted an analysis looking at the most
strongly predictive feature for each of the 15 tasks. Table 9
presents the single best feature for each of the review tasks,
as determined by the F-measure prediction score on the indi-
vidual features. There is no statistically significant correlation
of WSS@95% performance with the F-measure of the single
best feature. Even when removing the Triptans review topic
by assuming that it is an outlier, the correlation is very
weak (R2 5 0.079) and still not significant (p 5 0.329).

Note, however, that the best features are most commonly
words, as this is the case for nine of the 15 topics. Since the
discriminatory power of the publication type and MeSH is
one of the primary means by which the original expert-cre-
ated queries were constructed, there have to be other useful
features in order for the classifier system to outperform the
original query. Therefore, it is reasonable to infer that for
this to be possible there must exist effective classification fea-
tures that are not as immediately obvious (to the human ex-
perts constructing search queries) as MeSH and publication
types are. For example, for the highest scoring topic,
ADHD, the word ‘‘adults’’ was the most discriminating clas-
sifier feature, although this term does not appear in the
original expert-created query (the report inclusion criteria
encompassed both pediatric and adult populations). Simi-
larly, the terms for the single best features for BetaBlockers
(hospitalization), ProtonPumpInhibitors (superior), and Uri-
naryIncontinence (weeks) do not appear in the search strat-
egy. For ACEInhibitors, the MeSH Myocardial Infarction
does appear in the original search strategy, but not with the
mortality subheading included in the single best feature. In
fact, the word mortality does not appear in any form in the
original search strategy. Most interesting is the best feature
confidence interval (CI) for the topic CalciumChannelBlock-
ers. While this term, nor any obviously overlapping terms,
does not appear in the original search strategy, one can infer
that the presence of explicit confidence intervals was one
characteristic that reviewers were looking for when deciding
whether to include a given paper in the systematic review.

Table 9 j Best Single Feature and F-Measure of That Feature for Each Task

Review WSS@95% Best Feature F-measure of Feature

ACEInhibitors 0.5661 MESH_Myocardial_Infarction/mortality 0.3206
ADHD 0.6795 adults 0.3098
Antihistamines 0.0000 scale 0.2641
AtypicalAntipsychotics 0.1411 PUBTYPE_Multicenter_Study 0.3464
BetaBlockers 0.2844 hospitalization 0.2429
CalciumChannelBlockers 0.1221 CI (abbreviation for Confidence Interval) 0.3128
Estrogens 0.1834 years 0.5242
NSAIDs 0.4967 PUBTYPE_Multicenter_Study 0.5217
Opioids 0.1332 safety 0.0965
OralHypoglycemics 0.0896 study 0.4743
ProtonPumpInhibitors 0.2768 superior 0.2620
SkeletalMuscleRelaxants 0.0000 MESH_MAIN_Research_Support_Non-U 0.0437
Statins 0.2471 PUBTYPE_Multicenter_Study 0.2255
Triptans 0.0337 MESH_PRIMARY_Indoles/*therapeutic_use 0.3157
UrinaryIncontinence 0.2614 weeks 0.5192
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Conversely, for the Triptans topic, while the MeSH Indoles/
*therapeutic use does not appear explicitly in the expert
search strategy, the same concepts are largely covered by
the inclusion of each of the triptans of interest explicitly
(sumatriptan, almotriptan, etc.) in the search strategy along
with the MeSH Migraine/Drug Therapy. Therefore, there
may not be enough strong classification concepts for the
classifier to use in addition to those already expressed in
the original search strategy. This may be one reason why
the performance on the Triptans topic is so poor, despite the
presence of many statistically significant features. For the
OralHypoglycemics, another low-scoring topic, the most pre-
dictive feature was the word study. This concept was certainly
covered by the inclusion of expansions for Retrospective and
Comparative Study in the original search strategy.

The previously described work of Aphinyanaphongs et al. fo-
cused on improving sensitivity and specificity as measured
by the area under the receiver-operating curve, and not on
labor reduction as we have done here. Nevertheless, at the
highest levels of recall (sensitivity) such as we use in our
work, the improvement in precision of the Aphinyanaphongs
et al. approach is roughly similar to ours, varying from just
over unity to above 2.0. It is interesting that the improvement
in precision is similar considering the difference in sample
sizes and topic specificity, as the topic-specific nature of our
work leads to our sample sizes being much smaller and the
inclusion requirements for each drug review study are
much more specific.

Our current methods have several limitations. We are only us-
ing words from the title and abstract, MeSH, and MEDLINE
publication types as potential classification features. Addi-
tional work needs to be done to explore possible performance
improvements by including additional features such as full
document text, N-grams, parts-of-speech, and conceptual re-
lations derived from natural language- processing (NLP)
techniques. Furthermore, while we have had consistently en-
couraging results using the modified voting perceptron clas-
sifier with a linear kernel, other classifiers or higher order
kernels may improve performance.

Many classifier algorithms such as our voting perceptron pro-
duce, in addition to a predicted class, a score that can be used
as a confidence measure. This confidence measure can be
used to rank the individual documents returned by a search
query leading to an information retrieval approach, in con-
trast with the binary document classification presented
here. For the purposes of aiding the process of updating sys-
tematic treatment reviews, where the reviewers want to iden-
tify the best set of documents to review, query reranking may
not be as useful as document classification. However, the
ranking approach has been shown to have value in tasks
that continuously rerun the same queries to determine the or-
der in which query-matching publications are reviewed for
database annotation, such as that done by the Swiss-Prot cu-
rators when annotating the relationship between genetic dis-
eases and polymorphisms.15

Our data set included 15 drug reviews, all of which were
available at the time this work was performed. While this
number of topics is adequate to show that automated docu-
ment classification can provide benefit in the drug review
process, this sample size is small and our computation of

average WSS@95% and precision improvement have to be in-
terpreted in this context. Additional drug review data sets
would help to further characterize the expected frequency
and size of the work reduction for a typical drug review study.

Extending the system to process full text articles and using
full text classification methods may make significant im-
provements in classifier performance possible. For example,
Porter stemming may have a more consistent and beneficial
effect on full text. However, it is not clear that all sources
of full text, including MEDLINE-indexed journal articles,
Cochrane reviews, and non-English journal articles should
be processed together for classification. Further work is neces-
sary to determine the best means of including the different
types of full text articles. Full text may also allow us to include
some of the reports that were removed during the initial data
preparation process, which required the document to have an
entry within MEDLINE.

An automated document classification system such as ours
could be integrated into a full system that would automati-
cally rerun the drug review queries on PubMed or Ovid, clas-
sify the resulting documents, and notify the reviewers when
new positive documents were discovered for each drug re-
view. It would be straightforward for this notification to be
either an automated e-mail or from a news-feed (RSS) server.
These notifications would be useful both for focusing the
reviewer’s time on the most likely articles to include high-
quality topic-specific evidence, as well as to alert the review
team when a sufficient amount of new evidence had accumu-
lated to warrant an update of a given drug class review.

Conclusions
We have demonstrated that automated document classifica-
tion systems can provide value to the process of preparing
systematic evidence reviews. We have shown one method
of constructing and training a classifier system to accomplish
this task and have presented a means of estimating the perfor-
mance of such a system and using that estimate to decide for
which topics such a system would be most useful. For the vast
majority of topics studied, automated document classification
can provide some value in reducing the labor of manual re-
view, and for about 20% of topics, the reduction is very large,
approaching $50%.

Future work will focus on improving the classifier system and
investigating the incorporation of the system into systematic
review workflow. The results shown here are encouraging
enough to warrant building a system that automatically re-
runs the queries and notifies reviewers of papers classified
as positive for one of the 13 topics where a net gain was
shown. This will allow collection of prospective data to deter-
mine the actual effect on the workload of revising systematic
drug evidence reviews. It will also help determine the re-
quired level of recall and labor savings and how these param-
eters may change based on the topic, schedule, and other
environmental factors. Finally, additional classifier features
and classification algorithms should be investigated, such
as making use of the nine specific exclusion codes.

We encourage others to investigate applying text mining
and classification approaches to practical real-world prob-
lems in biomedical informatics such as presented here. Fur-
thermore, we encourage other investigators to use publicly
available collections whenever feasible. Therefore, we are
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publicly releasing the text collection and data set built and
used in this work. The files are available for download off
of the first author’s home page at http://medir.ohsu.edu/
;cohenaa.
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