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Information retrieval and text mining
(Hersh, 2009 — revised)

All data/information

Possibly relevant Information
data/information retrieval
Definitely relevant
data/information

Text mining
} (aka, information

Structured

extraction)
knowledge

Information retrieval (IR) and text
mining must be driven by

» Appropriate use cases

* Understanding of the content and challenges
of the two major types of data/information
— Patient-specific
— Knowledge-based

e Realistic evaluation




Patient-specific data/information

* Data/information about
patients, historically based in
the medical record (electronic
health record, EHR)

* But also growing amounts from
personal health records (PHRs),
wearable devices and sensors,
social media, etc.

* Some of this data may be highly
private

Knowledge-based data/information

* The knowledge base of
biomedicine and health

* Origin usually from
scientific studies ) —
published in literature
but many derived works
in reviews, guidelines, Pu bWEd
textbooks, compendia,
and Web sites




What are the important use cases?

* Patient-specific
— Clinical decision support

— Precision medicine — more precise clinical
measurements, including genomics, biomarkers, etc.

— “Re-use” of data for research, quality measurement
and improvement
* Knowledge-based

— Connecting clinicians, patients, and others with
knowledge to inform health and healthcare

— “Mining” the literature for associations, question-
answering, and other tasks

Q)
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Why is research in IR and text mining
methods important?

* Motivated by the challenges in the following
slides

* The methods to achieve those use cases still
need improvement, led by research and
evaluation

e Countering hype — especially that sold to
scientists, administrators, clinical leaders, and
others




Challenges for patient-specific data/

information
* Since 2010, the growth in
EHR use in the US (Henry,
2016) and many other
countries (Osborn, 2015) al
has ushered in a new era
of digital data that goes paer T
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beyond the EHR

* But re-using clinical data
for purposes beyond
documentation has many
challenges

SWIZ (54%)

Caveats for the Use of Operational Electronic Health
Record Data in Comparative Effectiveness Research

William R. Hersh, MD,* Mark G. Weiner, MD, 1 Peter J. Embi, MD, MS } Judith R. Logan, MD, MS*
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Inaccurate

* Documentation not always a top priority for busy
clinicians (de Lusignan, 2005)

* Data entry errors in a recent analysis in the
English National Health Service (NHS) — yearly
hospital statistics showed approximately
(Brennan, 2012)

— 20,000 adults attending pediatric outpatient services

— 17,000 males admitted to obstetrical inpatient
services — mainly due to male newborns (Roebuck,
2012)

— 8,000 males admitted to gynecology inpatient services

OHSU

Inaccurate (cont.)

* Analysis of EHR systems of four known national
leaders assessed use of data for studies on
treatment of hypertension and found five
categories of reasons why data were problematic
(Bayley, 2013)

— Missing

— Erroneous

— Un-interpretable

— Inconsistent

— Inaccessible in text notes

€N
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Incomplete

* Not every diagnosis is recorded at every visit; absence
of evidence is not always evidence of absence, an
example of a concern known by statisticians as
censoring (Zhang, 2010)

* Makes seeminly simple tasks such as identifying
diabetic patients challenging (Miller, 2004; Wei, 2013;
Richesson, 2013)

* Undermine ability to automate quality measurement

— Measures under-reported based on under-capture of data
due to variation in clinical workflow and documentation
practices (Parsons, 2012)

— Correct when present but not infrequently missing in
primary care EHRs (Barkhuysen, 2014)

Incomplete (cont.)

 Studies of health information exchange (HIE)

— Study of 3.7 million patients in Massachusetts
found 31% visited two or more hospitals over five
years (57% of all visits) and 1% visited five or more
hospitals (10% of all visits) (Bourgeois, 2010)

— Analysis of 2.8 million emergency department
patients in Indiana found 40% had data at multiple
institutions (Finnell, 2011)




Unrecoverable for research

* Despite adoption of EHRs, major problem now is lack

of interoperability due to incomplete adherence to
standards (ONC, 2014 and many, many others)

* Many clinical data are “locked” in narrative text

reports (Hripcsak, 1995; Hripcsak, 2012), including
summaries of care (D’Amore, 2012)

» State of the art for performance of NLP has improved

dramatically over the last couple decades, but is still
far from perfect (Stanfill, 2010)

* Electronic records of patients at academic medical

centers not easy to combine for aggregation (Broberg,
2015)

Surrogate Measures

Of unknown provenance and
insufficient granularity

Provenance — knowing where your  «  Granularity — knowing what
data come from (Seiler, 2011) your data mean
— Diagnostic codes assigned for

m— billing purposes may be
Order Enty Data oaa generalized to a broad class of

diagnosis due to regulatory
.
¢ and documentation
requirements

For example, patient with set

of complex cytogenetic and
morphologic indicators of a
pre-leukemic state may be
nDa(a

described as having
“myelodysplastic syndromes
(MDS)” for billing purposes,
but this is insufficient for other
purposes, including research

sainseeyy ejebouns

| Synthetic Variable |

| Aggregating Potential |
| Sources of "Truth" | | Re<®
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Many data “idiosyncrasies” between
clinical practice and research protocols

* “Left censoring” — First instance of disease in record
may not be when first manifested

* “Right censoring” — Data source may not cover long
enough time interval

* Data might not be captured from other clinical (other
hospitals or health systems) or non-clinical (OTC drugs)
settings

* Bias in testing or treatment

* Institutional or personal variation in practice or
documentation styles

* Inconsistent use of coding or standards
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Challenges for knowledge-based data/
information

Methodological challenges

Publication bias and the “winner’s curse”

Reproducibility

Misconduct
* Hype




Methodological challenges

* IR and text mining may be better at finding
knowledge but humans are (for now) better at
appraising it

 Critical appraisal is needed because there are
many limitations to current medical studies,
even with gold-standard randomized
controlled trials

Problems with RCTs

* Experimental studies are the best approach for

discerning cause and effect, but have limitations, e.g.

— Samples may not represent populations (Weng, 2014;
Prieto-Centurion, 2014; Geifman, 2016)

— “Medical reversal” of earlier results not uncommon
(Prasad, 2013; Prasad, 2015)

— Surrogate measures may not be associated with desired
clinical outcomes (Kim, 2015; Prasad, 2015)

— Like many other studies, temptations for p-hacking (Head,
2015)

— Differences between relative and absolute risk (Williams,
2013)
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Observation studies have challenges
as well, e.g., what causes cancer
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Biomedical researchers are not
necessarily good software engineers

Many scientific researchers write code
but are not always well-versed in best
practices of testing and error detection
(Merali, 2010)

Scientists have history of relying on
incorrect data or models (Sainani, 2011)

They may also not be good about
selection of best software packages for
their work (Joppa, 2013)

3000 of 40,000 studies using fMRI may
have false-positive results due to faulty
algorithms and bugs (Eklund, 2016)

N
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Publication bias and the “winner’s
curse”

* Publication bias is a long-known problem, not
limited to biomedicine (Sterling, 1959; Dwan,
2013)

* As aresult, what is reported in the scientific
literature may not reflect the totality of
knowledge, but instead representing the
“winner’s curse” of results that have been
positive and thus more likely to be published
(lonnaidis, 2005; Young, 2008)

* Initial positive results not infrequently later
overturned (lonnaidis, 2005)

Discrepancies between FDA reporting
and published literature

* Selective publication of antidepressant trials (Turner,
2008) — studies with positive results more likely to be
published (37 of 38) than those with negative results
(22 of 36 not published, 11 of 36 published in way to
convey positive results)

* Similar picture with antipsychotic drugs (Turner, 2012)

* FDA data also led to discovery of studies of COX-2
inhibitors (Vioxx and Celebrex) with altered study

design and omission of results that led to obfuscation
of cardiac complications (Juni, 2002; Curfman, 2005)

OHSU
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Reproducibility

In recent years, another problem has been identified:

inability to reproduce results (Begley, 2016)

— ACM: “An experimental result is not fully established unless it
can be independently reproduced” (2016)

Documented in

— Preclinical studies analyzed by pharmaceutical companies
looking for promising drugs that might be candidates for
commercial development (Begley, 2012)

— Psychology research (Science, 2015)

Recent survey of over 1500 scientists found over half
agreed with statement: There is a “reproducibility crisis” in
science (Baker, 2016)

— 50-80% (depending on the field) reported unable to reproduce
an experiment yet very few trying or able to publish about it

o )
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Misconduct

Many well-known cases, true scope of
fraudulent science probably impossible to
know because science operates on honor
systems

Documentation of many cases:
Retractionwatch.com

Predatory journals — fueled in part by open
access movement (Haug, 2013; Moher, 2016)
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Hype

* Highest-profile system is IBM Watson

— Developed out of TREC Question-Answering Track
(Voorhees, 2005; Ferrucci, 2010)

— Additional (exhaustive) details in special issue of
IBM Journal of Research and Development
(Ferrucci, 2012)

— Beat humans at Jeopardy! (Markoff, 2011)

— Now being applied to healthcare (Lohr, 2012); has
“graduated” medical school (Cerrato, 2012)

N,
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Applying Watson to medicine
(Ferrucci, 2012)

* Trained using several resources from internal medicine: ACP
Medicine, PIER, Merck Manual, and MKSAP
* Concept adaptation process required
— Named entity detection — e.g., disambiguation of terms and their
senses
— Measure recognition and interpretation — e.g., age or blood test value
— Recognition of unary relations — e.g., elevated <test result>
* Trained with 5000 questions from Doctor's Dilemma, a competition
like Jeopardy!, in which medical trainees participate and is run by
the ACP each year
— Sample questionis, Familial adenomatous polyposis is
caused by mutations of this gene, with the answer
being, APC Gene

* Googling the question gives the correct answer at the top of its ranking to this
and two other sample questions listed

14



Evaluation of Watson on internal
medicine questions (Ferrucci, 2012)

Evaluated on an additional 188
unseen questions

Primary outcome measure was
recall at 10 answers

— How would Watson compare

against other systems, such as
Google or Pubmed, or using

Recall@10
- B
5
&
[
L
7 _ i

other measures, such as MRR? ¢ e & @ﬁ
. & S &
Future use case for Watson is N & &
applying system to data in EHR, o

ultimately aiming to serve as a
clinical decision support system
(Cerrato, 2012)

— Performance so far falls “within

evidence-based standards” (Kris,
2015)
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Implications for IR and text mining
research

The use cases driving IR and text mining in
biomedicine are important

— The future of clinical medicine needs these tools
There are many challenges in developing and
evaluating systems

— But overcoming them is important
The agenda for IR and text mining is identical to
that of biomedical informatics generally, e.g.,

— Standards and interoperability

— Realistic and rigorous evaluation and reproducibility

N
30
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Some solutions we can pursue

* System development — should
— Accommodate important use cases
— Address challenges with data and information

e Evaluation

— System-oriented studies fine for initial evaluation but
must translate to focus on use cases, including studies
of users and clinical outcomes

* Must not forget that biomedical informatics is a
field that applies information solutions to real
problems in health and healthcare
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