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Rationale

* Although focus in recent years has been on EHR
implementation and “capture/share data” of
Stage 1 meaningful use (MU), informatics work in
the future will shift to putting the data and
information to good use (Hersh, 2012)

* As the quantity and complexity of healthcare
data grow through EHR capture, genomics, and
other sources, the number of facts per clinical
decision will increase, requiring increasing help
for decision-makers (Stead, 2011)
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Definitions

* Both a buzz-word and an important emerging area

* Davenport (2007) — “the extensive use of data,
statistical and quantitative analysis, explanatory and
predictive models, and fact-based management to
drive decisions and actions”

* IBM (2012) — “the systematic use of data and related
business insights developed through applied analytical
disciplines (e.g. statistical, contextual, quantitative,
predictive, cognitive, other [including emerging]
models) to drive fact-based decision making for
planning, management, measurement and learning”
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Levels of analytics (Adams, 2011)

FS

Optimization Diagnostic and How can we achieve the best Prescriptive
therapeutic approaches outcome?
Predictive modeling BN What will happen next if...?

patients

Degree of | EESRSIRS Public hezlth What if these trends continue? Predictive
Competitive issues
Advantage . . :
9 Simulation Business What could happen if...?
and processes
Complexity Infection

Alerts When are actions needed?

outbreaks

. “Slice and :
Query/drill-down o What exactly is the problem? oy
g E 2 Descriptive
Out-of-ran
Ad hoc reporting How many, how often, where?
Standard reporting What happened?
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Related terms

* Machine learning — area of computer science focused
on systems and algorithms that learn from data (Flach,
2012; Crown, 2015)

* Data mining — processing and modeling of data to
discover previously unknown patterns or relationships
(Bellazzi, 2008; Zaki, 2014)

* Text mining — applying data mining to unstructured
textual data (Aggarwal, 2012)

* Big data — data of growing volume, velocity, variety,
and veracity (Zikopolous, 2011; O’Reilly, 2015)

— e.g., ~9 petabytes of data of Kaiser-Permanente (Gardner,

2013)
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Related terms (cont.)

Data science — distinguished from statistics by
understanding of varying types and how to manipulate
and leverage (Dhar, 2013; Grus, 2015)

Data provenance — origin and trustworthiness
(Buneman, 2010)
* Business intelligence — use of data to obtain timely,
valuable insights into business and clinical data
(Adams, 2011)
Personalized (Hamburg, 2010), precision (IOM, 2011;
Collins, 2015; Ashley, 2015), or computational
medicine (Winslow, 2012)
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Analytics is well-employed outside of
healthcare

Amazon and Netflix recommend books and movies with great precision

Many sports teams, such as the Oakland Athletics and New England
Patriots, have used “moneyball” to select players, plays, strategies, etc.
(Lewis, 2004; Davenport, 2007)

Twitter volume and other linkages can predict stock market prices (Ruiz,
2012)

US 2012 election showed value of using data: re-election of President
Obama (Scherer, 2012) and predictive ability of Nate Silver (Salant, 2012)
Individual traits such as sexual orientation, political affiliation, personality
types, and ethnicity can be discerned from Facebook “likes” with high
accuracy (Kosinski, 2013)

“Internet advertising” is a growing area (Smith, 2014), aiming to solve
“Wanamaker dilemma” (O’Reilly, 2012)

Government (e.g., National Security Agency in US) tracking of email,
phone calls, and other digital trails (Levy, 2014)

What about analytics in healthcare?

With shift of payment from “volume to value,”
healthcare organizations will need to manage
information better to deliver better care (Diamond,
2009; Horner, 2012)
— To realize this, they must achieve “analytic

integration” (Davenport, 2012)
New care delivery models (e.g., accountable care
organizations) will require better access to data (e.g.,
health information exchange, HIE)
— Halamka (2013): ACO = HIE + analytics

Recent overviews (Burke, 2013; Gensinger, 2014;
Marconi, 2014)

Q
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Applications of analytics in healthcare

* Early application —identifying patients at risk for
hospital readmission within 30 days of discharge

* Centers for Medicare and Medicaid Services
(CMS) Readmissions Reduction Program
penalizes hospitals for excessive numbers of
readmissions (2013)

* Several studies have used EHR data to predict
patients at risk for readmission (Amarasingham,
2010; Donzé, 2013; Gildersleeve, 2013; Shadmi,
2015)
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Applications of analytics — identifying
other clinical situations

* Predicting 30-day risk of readmission and death among HIV-
infected inpatients (Nijhawan, 2012)

* |dentification of children with asthma (Afzal, 2013)

* Detecting postoperative complications (FitzHenry, 2013)

* Measuring processes of care (Tai-Seale, 2013)

* Determining five-year life expectancy (Mathias, 2013)

* Detecting potential delays in cancer diagnosis (Murphy, 2014)

* Identifying patients with cirrhosis at high risk for readmission
(Singal, 2013)

* Predicting out of intensive care unit cardiopulmonary arrest or
death (Alvarez, 2013)

* Predicting hospital death by day or time of day (Coiera, 2014)

* Predicting future patient costs (Charlson, 2014)

Q
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Applications of analytics — patient
identification and diagnosis

Identifying patients who might be eligible for
participation in clinical studies (Voorhees,
2012)

Determining eligibility for clinical trials
(Kopcke, 2013)

Identifying patients with diabetes and the
earliest date of diagnosis (Makam, 2013)
Predicting diagnosis in new patients (Gottlieb,
2013)
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Most important use cases for data
analytics (Bates, 2014)
High-cost patients — looking for ways to intervene
early
Readmissions — preventing
Triage — appropriate level of care
Decompensation — when patient’s condition
worsens
Adverse events —awareness
Treatment optimization — especially for diseases
affecting multiple organ systems
N @
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Requirements for data analytics in
healthcare

* Infrastructure (Amarasingham, 2014)
— Stakeholder engagement
— Human subjects research protection
— Protection of patient privacy
— Data assurance and quality
— Interoperability of health information systems
— Transparency
— Sustainability
* New models of thinking and training (Krumholz, 2014)

* New tools, e.g., “green button” to help clinicians
aggregate data in local EHR (Longhurst, 2014)

Q
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Results of analytics in improving
patient outcomes

* Readmission tool applied to case management approach helped
reduce readmissions (Gilbert, 2013)

* Bayesian network model embedded in EHR to predict hospital-
acquired pressure ulcers led to tenfold reduction in ulcers and one-
third reduction in intensive care unit length of stay (Cho, 2013)

* Readmission risk tool intervention reduced risk of readmission for
patients with congestive heart failure but not those with acute
myocardial infarction or pneumonia (Amarasingham, 2013)

* Automated prediction model integrated into existing EHR
successfully identified patients on admission who were at risk for
readmission within 30 days of discharge but had no effect on 30-
day all-cause and 7-day unplanned readmission rates over 12
months (Baillie, 2013)
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Challenges for analytical use of clinical
data

* Data quality and accuracy is not a top priority for
busy clinicians (de Lusignan, 2005)

* Patients get care at different places (Bourgeois,
2010; Finnell, 2011)

* Standards and interoperability — mature
approaches but lack of widespread adoption
(Kellermann, 2013)

* Much data is “locked” in text (Hripcsak, 2012)

* Average pediatric ICU patient generates 1348
information items per 24 hours (Manor-Shulman,
2008)

RQ
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Caveats for use of operational EHR
data (Hersh, 2013) — may be

* |naccurate
* Incomplete

* Transformed in ways that
undermine meaning

* Unrecoverable £
* Of unknown provenance
* Of insufficient granularity

* Incompatible with
research protocols
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Many “idiosyncrasies” of clinical data
(Hersh, 2013)

* “Left censoring” — First instance of disease in record
may not be when first manifested

* “Right censoring” — Data source may not cover long
enough time interval

* Data might not be captured from other clinical (other
hospitals or health systems) or non-clinical (OTC drugs)
settings

* Bias in testing or treatment

* Institutional or personal variation in practice or
documentation styles

* Inconsistent use of coding or standards
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Recommendations for use of
operational EHR data (Hersh, 2013)

Recommendation Description
Apply an Evidence- Ask an answerable question, find the best EHR data (“evidence”),
Based Approach appraise the data, apply evidence to question

Evaluate and Manage
Data

Assess availability, completeness, quality (validity), and
transformability of data

Create Tools for Data

Create software (especially pipelines) for data aggregation,

Management validation and transformation
Determine Metrics for Determine whether a particular site’s data are “research grade”
Data Assessment

Develop Methods for
Comparative Validation

Develop tools that support analysis of multi-site data collections

Develop a Methodology | Develop a data catalogue that relates data elements to recommended
Knowledge Base transformations

Standardize Reporting Provide details of data sources, provenance and manipulation, to
Methods support comparison of data

Engage Informatics Ensure validity of findings derived from data collected from
Expertise disparate sources

Include an Informatics Generate systematic studies of inherent biases in EHR and data
Research Agenda collection methods, such as data entry user interfaces
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Apply an evidence-based medicine
approach (Hersh, 2013)?

Ask an answerable question
— Can question be answered by the data we have?
Find the best evidence

— In this case, best evidence is EHR data needed to
answer the question

Critically appraise the evidence

— Does the data answer the question?

— Are there confounders?
Apply it to the patient situation

— Can the data be applied to this setting?

Q
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Analytics workforce

* Data scientists — the “sexiest profession of the 215t
century” (Davenport, 2012)

* Key skill sets include

— Machine learning, based upon a foundation of statistics
(especially Bayesian), computer science (representation
and manipulation of data), and knowledge of correlation
and causation (modeling) (Dhar, 2013)

— IBM = both “numerate” and business-oriented skills
(Fraser, 2013)

— NIH — big data researchers need training in quantitative
sciences, domain expertise, ability to work in diverse
teams, and understanding concepts of managing and
sharing data (NIH, 2013)

Q
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How many are needed?

* McKinsey (Manyika, 2011) — need in US in all
industries (not just healthcare) for
— 140,000-190,000 individuals who have “deep
analytical talent”
— 1.5 million “data-savvy managers needed to take
full advantage of big data”
* In UK, estimated by 2018 will be over 6400
organizations that will hire 100 or more
analytics staff (SAS, 2013)

Q
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What skills are needed (Hersh, 2014)?

* Programming — especially with data-oriented tools,
such as SQL and statistical packages

* Statistics — working knowledge to apply tools and
techniques

* Domain knowledge

* Communication — ability to understand needs of
people and organizations and articulate results back to
them

* Is this informatics? Or a specialization of informatics?
Or something totally different?

Q
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How can | learn more in Oregon?
Study informatics?

* Many educational opportunities at a variety of
levels, mostly graduate
— http://www.amia.org/informatics-academic-training-
programs
* OHSU program one of largest and well-
established (Hersh, 2007)
— http://www.ohsu.edu/informatics-education
— Graduate level programs at Certificate, Master’s, and
PhD levels
— “Building block” approach allows courses to be carried
forward to higher levels
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OHSU program has three tracks

* Clinical Informatics
— Original track, focused on informatics in health,
healthcare, public health, and clinical research
settings
* Bioinformatics and Computational Biology (BCB)
— Focused on informatics in genomics. molecular
biology, and their translational research aspects
* Health Information Management (HIM)

— Overlapping with clinical informatics, focused on HIM
profession and leading to Registered Health
Information Administrator (RHIA) certification
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OHSU offers a variety of degrees and

certificates

* Doctor of Philosophy (PhD)

— For those who wish to pursue research, academia, or
leadership careers

* Master of Science (MS)

— Research master’s, including for those with doctoral
degrees in other fields who wish to pursue research
careers

* Master of Biomedical Informatics (MBI)
— Professional master’s degree for practitioners and leaders
* Graduate Certificate

— Subset of master’s degree as an introduction or career
specialization
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Tracks, degrees and certificates, and

Degree/Certificate PhD MS MBI Grad Cert
Track
Clinical Informatics On-campus On-campus On-campus
On-campus
On-line On-line On-line
Bioinformatics and
Computational On-campus On-campus
Biology
Health Information On-campus On-campus On-campus
Management
On-line On-line On-line
L_>RHAVQ\ @
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Overview of OHSU graduate programs

PhD
- Knowledge Base

Masters - Advanced Research
- Tracks: Methods

- Clinical Informatics - Biostatistics

- Bioinformatics - Cognate

- Thesis or Capstone - Advanced Topics

- Doctoral Symposium
- Mentored Teaching
- Dissertation

Graduate Certificate
- Tracks:
- Clinical Informatics
- Health Information Management

10x10
- Or introductory course
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Conclusions

* There are plentiful opportunities for data
analytics in healthcare

* We must be cognizant of caveats of using
operational clinical data

* We must implement best practices for using
such data

* There are also opportunities for HIM and
informatics professionals in healthcare data
analytics
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For more information

Bill Hersh
—  http://www.billhersh.info

Informatics Professor blog
— http://informaticsprofessor.blogspot.com

OHSU Department of Medical Informatics & Clinical Epidemiology (DMICE)

—  http://www.ohsu.edu/informatics
—  http://www.youtube.com/watch?v=T-74duDDvwU
—  http://oninformatics.com
What is Biomedical and Health Informatics?
—  http://www.billhersh.info/whatis
Office of the National Coordinator for Health IT (ONC)
—  http://www.healthit.gov
American Medical Informatics Association (AMIA)
—  http://www.amia.or;
National Library of Medicine (NLM)
— http://www.nlm.nih.gov
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